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Preface

This document represents the completion of NASA Grant NAG8-240, "Design and

Application of Electromechanical Actuators for Deep Space Mission." The investigators

at The University of Alabama deeply appreciate the support of NASA personnel at

Marshall Space Flight Center. Individuals that have been particularly helpful during the

period of performance are Mr. Charles Cornelius, Mr. John R. Cowan, Ms. Rae Ann

Weir, and Mr. John Sharkey.

We hope that you find our work useful, and intend to keep you apprised of all

developments as we continue to work in the field of electromechanical actuation. The

opportunity to work with all participants has been productive and rewarding.
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I. EXECUTIVE SUMMARY

This document is the final report submitted in completion of NASA Grant NAG8-

240, "Design and Application of Electromechanical Actuators for Deep Space Missions."

This is the sixth report issued during the period of performance from August 1992

through December 1995. Throughout the period of performance, our efforts have

deviated significantly from the thrust in the original proposal. However, this grant was

originally envisioned as a flexible vehicle for research and development associated with a

dynamically changing program at Marshall focused on electromechanical actuation in the

SSME TVC application.

Previous reports have contained documentation of various tasks and studies that were

completed under this project. This report contains new information as well as an

overview of the Electromechanical Actuation Test Facility. Completion of the test

facility represents what we consider to be the major accomplishment of this project. The

complete set of reports, a total of six including this report, forms a complete presentation

of significant work funded on grant NAG8-240. This research project has been an

extremely beneficial undertaking for The University of Alabama College of Engineering.

The funding has allowed faculty in two departments to develop expertise in the growing

field of electromechanical actuation. Additionally, the grant has enabled the development

of a premier laboratory facility and the support of several graduate students. In fact, this

project has funded one student through both the M.S. and Ph.D. degrees. Others have

completed M.S. degrees alone through work associated with the project.

1.1. Accomplishments

During the 3.5 year period of performance, we have investigated many issues and

have tried to answer several questions that were posed by NASA personnel. A bullet list

of the major topics addressed, studies performed, and tasks completed is provided below.

Note that the parenthetical dates reference reports in which information on the topic can

be located.

• EMA Test Facility Development (2/93, 9/93, 2/94, 8/94, 3/95, 5/96)

• Roller Screw Modeling (2/93)

• Motor Selection (2/93, 2/94)

• Health Monitoring and Fault Diagnosis (2/93, 9/93, 2/94, 5/96)

• Analysis of Stiff-Arm Tests (9/93)

• Comparison of EMA and Hydraulic TVC Actuator Responses (9/93)

• Motor Drive Development (8/94, 3/95)

• Engine Startup Transients Load Tests (5/96)

• Actuator Model Development (5/96)

• Optimal Component Selection for EMAs (5/96)



Considering all results, findings, and accomplishments,the completion of the

Electromechanical Actuation Test Facility (EMATF) is the most significant. The

EMATF is an ideal facility for modeling and performance testing high-power

electromechanical actuators under realistic loading conditions. Additionally, the facility

is well suited for prototype development and system integration studies.

In this report, several new topics are presented. Results from engine startup transient

load tests, performed in the EMATF, are presented. Also, experimental and theoretical

work is combined to provide insight into actuator model development. The impact of

actuator modeling on control system design is addressed. And finally, this report

contains a preliminary study on methods for optimal selection of actuator components.

This particular information was recently request by NASA personnel, and some

interesting results are presented.

1.2. Personnel

Throughout the project, three faculty member have received support for efforts

associated with this grant. Multiple M.S. students and one Ph.D. student have been

supported by grant funds, and other students have been involved in research activities

without grant funding. A list personnel information for the complete period of

performance is provided in Table I. 1.

Table 1.1- Personnel Information

Faculty

Name Department Received Funding

Tim A. Haskew Electrical Engineering Yes

John Wander Mechanical Engineering Yes

Dale E. Schinstock Mechanical Engineering Yes

Jon G. Bredeson Electrical Engineering No

Graduate/Undergraduate Students

Name Department Degree Funded

Program

Sumit K. Bhattacharyya EE MS Yes

Ramomohan Challa CS MS No

Kris Cozart ME MS Yes

Frank DeCord ME MS Yes

David Tycyn Ewing EE MS Yes

Stanley McCarter EE BS No

Scan McGraw EE BS No

Felix Naylor EE BS No

Chris Nielsen EE BS No

Stuart Payne ME MS Yes

Thomas E. Salem EE MS/PhD Yes

Yoon Gyeoung Sung ME MS No

1.2



1.3. Technology Transfer

Throughout performance of the project, emphasis was placed on publishing results in

widely circulated technical journals and on presenting results at recognized conferences.

Additionally, technology transfer was obtained through publication of theses and

dissertations. The theses and dissertation listed below have been accepted and

successfully defended while other M.S. theses are in preparation:

Salem, Thomas Eric, Prime Mover Selection for Electromechanical

Actuation in Thrust Vector Control Applications, Master of Science

Thesis, The University of Alabama, Department of Electrical Engineering,

1993.

Challa, Ramomohan, Design of a Computer System to Test Roller Screw

Actuators, Master of Science Thesis, The University of Alabama,

Department of Computer Science, 1994.

Salem, Thomas Eric, Health Monitoring of a Brushless Permanent

Magnet Machine Using an Adaptive Kalman Filtering Approach, Doctor

of Philosophy Dissertation, The University of Alabama, Department of

Electrical Engineering, 1996.

In addition to theses and dissertations, the papers listed below have either been

published or accepted for presentation and/or publication:

Haskew, Tim A., Dale E. Schinstock, Thomas E. Salem, and Jon G.

Bredeson, "Brushless Machine Simulation and Monitoring," Proceedings

of the 31st lntersociety Energy Conversion Engineering Conference," to

appear, Washington, D.C., August 1996.

Schinstock, Dale E. and Tim A. Haskew, "Dynamic Load Testing of

Roller Screw EMAs," Proceedings of the 31st lntersociety Energy

Conversion Engineering Conference," to appear, Washington, D.C.,

August 1996.

Wander, J., V. Byrd, and J. Parker, "Initial Disturbance Accommodating

Control System Analysis for Prototype Electromechanical Space Shuttle

Steering Actuator," Proceedings of the 1995 American Control

Conference, Seattle, Washington, June 1995.

Salem, Thomas and Tim A. Haskew, "Simulation of the Brushless DC

Machine," Proceedings of the Twenty-Seventh Southeastern Symposium on

System Theory, Starkville, Mississippi, pp. 18-22, March 1995.

1.3



Haskew, Tim A., "Health Monitoring
Issues," Proceedings of Prospector VI."

Park City, Utah, March 1994.

and Other Selected Research

Electric Actuation Workshop,

Other manuscripts are in progress for submission to refereed journals. The topics for

planned submissions include:

• Real-Time Health Monitoring of Brushless Permanent Magnet Machines

• EMA Power Electronic Efficiencies with Various Control Strategies

• Optimal EMA Component Selection

• Dynamic Load Tests of EMAs

• EMA Model Developments

In addition to publication, technology transfer has been demonstrated through the

involvement of the investigators in various conferences and on various professional

society working groups and subcommittees. Specifically, Tim A. Haskew chaired the

Key Research Issues working group sessions at Prospector VI: Electric Actuation

Workshop and will chair an EMA session at the 1996 IECEC. He has also become active

in related IEEE Power Engineering Society working groups and subcommittees focusing

on motor monitoring and performance.

1.4. Future Efforts

While several studies have been completed during the period of performance, many

issues remain open to further study. The authors intend to continue with a research focus

on electromechanical actuation and provide further information on the open issues. It is

expected that funded programs will be developed through governmental agencies and

industrial entities that will continue to keep the EMATF up-to-date and well used.

In order to enhance our capabilities within the laboratory, the motor drive system will

be upgraded using microprocessor controllers and field programmable gate array

technology. This will allow a much simpler verification and study of control algorithms

and electrical side fault impacts through software modification rather than hardware

construction. Furthermore, a dedicated data acquisition and control computer will be

provided for the electrical side of the facility.

Health monitoring efforts will be implemented in real-time using DSP technology,

and health information based control architectures will be studied. Furthermore, much

effort is planned in the areas of optimal component selection and actuator model

development.
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II. THE ELECTROMECHANICAL ACTUATION
TEST FACILITY

The most significant accomplishment during this project was the completion of the

Electromechanical Actuation Test Facility (EMATF). The EMATF provides an ideal

setting for actuator prototyping, performance testing, modeling, and system integration

studies. Hence, the laboratory is expected to be heavily used in the future. The most

significant offering of the facility is the computer-controlled dynamic loading capability.

When coupled with the instrumentation system, actuator testing and development can be

performed under realistic loading conditions. The facility is housed within Department of

Electrical Engineering facilities in the East Engineering Building. This report section

contains an overview of the EMATF and its various subsystems. Detailed drawings,

specifications, and electrical schematics are on file within the laboratory.

I1.1. Mechanical Construction of the Test Stand

The general configuration of the test stand in the EMATF is shown in Figure II. 1.

This test stand was designed to produce large dynamic loads on a linear actuator, under

force control or position control. It was also designed to be reconfigurable so that

different actuators could easily be mounted in the stand for testing. The test stand will

accept either rigidly mounted linear actuators, as shown in the figure, or self contained

actuators with pivoting end connectors, like clevis mounts. Nominally, all components in

the test stand were designed to withstand at least 100 kip in the extension of the hydraulic

cylinder and 50 kip in the retraction of the hydraulic cylinder. The I-beam structure itself

will withstand much larger loads, and was designed to be very stiff, and not contribute

significantly to the dynamics of the loading and measurement systems.

Fig. I1.1 - EMA Test Stand with the Small Bore Cylinder



The two end beams of the structure can be moved up and down the length of the two

side beams. The side beams are longer than shown in the figure, and allow a maximum

span of 85 inches between the end beams. The hole patterns necessary to accept the

mounting bolts for the end beams have been predrilled in the side beams along their

length. Also, several load/extension pipes have been fabricated so that the length of the

hydraulic cylinders can be adjusted. This allows different length actuators and cylinders

to be placed in the stand with minimal effort required for reconfiguration. In Figure II.2,

the stand is shown with a larger diameter cylinder mounted within the span between the

two end beams.

The carriage within the test stand serves several purposes. It is useful in the

alignment of rigidly mounted actuators and the load cylinders. Once the rails for the

carriage are placed, the actuator and the cylinder may be aligned using the carriage as a

reference. This allows the cylinders to be aligned very quickly when they are exchanged.

The carriage can also be used to support one end of a self contained actuator. Another

purpose for the carriage is in supporting instrumentation and side load actuators that must

travel with the end of the actuator. The carriage has a friction slide, not shown in the

figures, that allows motion in the transverse direction, along the beam of the carriage.

This degree of freedom can be fixed with clamp bolts. The purposes of the carriage for

the setup shown in the two figures, with a rigid mount actuator and no transverse loading,

are to absorb the reaction torque of the nut resulting from axial loads and to provide

transverse and vertical support to eliminate the chance of buckling over the long span of

the drive train. The carriage rails may also be moved up and down the length of the side

beams. The majority of the effort required in moving the rails is in their alignment after

they are placed.

Fig. 11.2- EMA Test Stand with the Large Bore Cylinder

Not shown in the previous two figures is a transverse loading mechanism that may be

used to produce side loads on the actuator. The mechanism is basically a spring that

attaches to the carriage. It travels with the nut, pushing the side of it as it travels up and
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down the screw. The force is adjusted by changing the compression of the spring, and is

measured with a load cell.

11.2. Present Mechanical Drive Train

The present mechanical/hydraulic drive train in the EMA teststand is shown in Figure

II.3. This figure shows the hydraulic loading system coupled to the electromechanical

actuator. The axial load generated by hydraulic system is transformed to torsion in the

roller nut. The axial load of the screw is transferred to the end beam of the teststand

through the bearings on the roller screw. The load cell directly measures the force

applied to the nut cage and nut, eliminating the dynamics of the loading system and test

stand from the force measurement. Note in Figure II. 1 that the carriage is attached to the

drive train between the extension pipe and the load cell. Both the load cell and the

extension pipe are hollow allowing the roller screw to extend through them. This is

necessary for the load cell to be connected directly to the nut cage. The LVDT measures

the displacement of the nut relative to the end beam.

l \ _ _ ._o _ ._ _'<--

Fig, 11.3- Present Mechanical Drive Train

If it is assumed that the test stand structure is stiff, all of the energy of the measured

axial load is either converted to mechanical energy in the EMA actuator system,

dissipated in the EMA actuator system, or leaves the system through a torque applied to

the motor. This is an important requirement for accurate dynamic analysis of the actuator

system using the measured load.

The EMA actuator system includes the nut cage, the nut, the roller screw, the

radial/thrust bearings, the gear reduction, and the motor. The particular roller screw and

nut used are an SKF set with a non-preloaded nut, a 48 mm nominal diameter screw, and

20 mm lead. There are six radial/thrust ball bearings that are preloaded with three

bearings absorbing compressive loads and three absorbing tensile loads. The gear reducer

is a Micron planetary reducer with a 4 to 1 reduction. It was designed to mate directly to
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themotorusedin the system.Themotorwill bediscussedin asubsequentsectionof the
report.

11.3. Hydraulic Load System

A schematic drawing of the hydraulic load system is shown in Figure II.4. The key

features of this hydraulic system are the high flow rate servo valve and the accumulator.

These two components allow the system to generate large dynamic loads at high flow

rates. Without the accumulator, the system becomes flow starved at relatively low

velocities and force rates. This is due to the large cylinders used to generate the loads and

the limited flow rates of fixed displacement pumps. The system also contains a high

pressure filter along with the standard return line filter and reservoir strainer. A solenoid

operated relief valve is used for safety purposes and no load pump start. Two different

size cylinders are currently used in the system. Both of these cylinders are fairly large.

Motor and
Pump

Accumulator

Solenoid

Cylinder L _-_

Z

Servo
Valve

Relief Valve

_J

Fig. 11.4- Hydraulic System Schematic

Specifications for hydraulic load system are given below:

• Operating Pressure - Up to 3000 psi

• Prime Mover - 30 Hp, 1150 rpm AC induction motor

• Fixed Displacement Pump Flow Rate - 3.42 in3/rev, 17 gpm @ 1150 rpm

• Servo Valve - Two stage servo valve, Ap = 72 psi at 53 gpm, 40 Hz bandwidth at 5%

displacement and 12 Hz bandwidth at 100% displacement

• Accumulator - 5 gallon gas charged accumulator, 1900 psi charge
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• Large Cylinder - 7" bore, 3" rod, 4" stroke, max. force 115/94 kip (ext./retract),

max. velocity w/o accumulator 1.7/2.1 in/s (ext./retract)

• Small Cylinder - 4" bore, 2.5" rod, 13" stroke, max. 38/23 kip (ext./retract),

max. velocity w/o accumulator 5.2/8.5 in/s (ext./retract)

The hydraulic system may be used in either a position control mode or in a force

control mode. The following two diagrams show the components involved in the

position control loop and the force control loop respectively. The valve

amplifier/controller implements and analog position controller for the spool of the main

stage of the valve. A digital, load position control loop is implemented around the valve's

spool position controller, using the computer. This is shown in Figure II.5. The position

feedback used is usually from the long stroke LVDT, which is connected to the load at

the location where position is to be controlled.

Accumulator E

Sewo

L_ Valve

_ Valve Position _ I

_-._ Command j__ ____

Valve Cylinder_
Amplifier/
Controller J

Position Feedback_

Fig. 11.5- Hydraulic Position Control Loop

The valve amplifier/controller can also be configured to implement an analog pressure

control loop, around the spool position loop, using the feedback from a pressure

transducer. To achieve an analog force controller the load cell output is fed back to the

valve controller in place of a pressure transducer output, as illustrated in Figure 11.6. The

load cell is placed in the system so that it measures the force applied to the actuator being

tested.
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Accumulator

Controller Force Feedback

Fig. 11.6- Hydraulic Force Control Loop

The previous two figures do not show all of the instrumentation on the test stand.

They show only that hardware involved in the hydraulic control loops. The accumulator

is shown in these figures because it significantly affects the performance of the system.

As an example of what is achievable with the force control system, Figure II.7 is

included. This figure was generated with the force control system and a stiff load. The

load connected to the cylinder was a deadhead beam that was attached to the test stand

using four 2 1/2 ft long sections of 3/4 in all thread inside of square tubing. This is a

fairly stiff load. With this type of load it would be expected that a high frequency

dynamic load could be generated. It should be pointed out that very little tuning of the

control system was done before this load was generated. The purpose of the test to check

out the system and to get a feel for what the how it performed.

8OOOO.

Axial Load vs. Tim

oocoo

4ooco

.o 20o0o

o,
.ff

-2o0o0

.40000

-806oc

Time(sec)

Fig. II.7 - 12 Hz, 62 kip, Deadhead Test
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11.4. Electrical Drive System

The electrical drive system within the Electromechanical Actuation Test Facility is

presently based on a six-pulse IGBT inverter operating without snubbers. The motor

drive is modular in design. Hence, multiple inverters can be directly inserted into the

drive assembly. The motor is equipped with a resolver, and the motor control unit has an

onboard resolver-to-digital converter. Commutation logic is accomplished with discrete

TTL components. The control loops are presently implemented in an analog fashion, but

will be upgraded to microprocessor based loops. The control system is highly flexible in

terms of reconfiguration and access to various quantities for measurement. A 400 A, 600
V IGBT inverter will soon be tested in the drive.

The motor on the test stand is a Kollmorgen Goldline B-802-B permanent magnet

synchronous machine. Presently, the motor is being controlled as a brushless dc

machine. The data on the motor is provided below:

• Output Power - 13.6 Hp (cont.)

• Speed - 2,750 RPM (max.)

• Stall Torque - 43.1 N-m (25°C, cont.), 40.7 N-m (40°C, cont.)

• Line Current - 32.4 Arms (cont.), 108.2 A rms (peak)

• Peak Torque - 129.2 N-m

• Line Voltage - 250 V dc (max.)

• Rotor Inertia - 0.00488 kg-m 2

• Viscous Damping - 0.237 N-m/KRPM

Power sources within the facility are plentiful. The primary utility service is three-

phase, 208 V, with an ampacity of 225 A. This source can be directly connected to an

autotransformer and rectifier/filter, or it can be used to drive an MG set with a dc

generator output. All power connections are easily accessible from a main power panel in

the Electric Power and Machines Laboratory.

the

11.5. Instrumentation

The test stand and motor drive system are well instrumented. The instrumentation of

test stand includes the following:

• Axial Load Cell - +/- 100,000 Ib force range,

• Long Stroke LVDT - 16 in stroke

• Transverse Load Cell - 1500 lb range

• Transverse LVDT - 0.4 in stroke

+/- 20,000 in-lb torque range
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Theinstrumentationincorporatedinto theonthemotordrive includesthefollowing:

Currentandvoltagemeasurementonall phasesof themotorandondcbus
12-bit resolverto digital convertergiving digital motor position and analogmotor
speed

Thedataacquisitionsystemincludesa 66 MHz 486PC/AT computer,a 330 kHz, 12
bit, 16channelA/D cardandanexternal,sixteenchannel,simultaneoussampleandhold
board. The sample rate of the A/D card specified is the rate at the A/D and therefore must

be divided by the number of channels being sampled when calculating the sample rate for

each channel. Also, this rate is that possible using block transfers of the data to the

PC/AT memory without considering the CPU time required for tasks other than data

acquisition. Therefore, the sample rate is reduced in the applications where the computer

is also performing control tasks. The external sample and hold board is used to eliminate

the channel to channel skew of the acquired data in applications with a high sampling

rate.
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III. ENGINE STARTUP TRANSIENT LOAD TESTS

This chapter of the report describes the dynamic load tests performed to qualify the

effects of large dynamic loads, such as those experienced by the Space Shuttle Main

Engine actuators, on the roller screw actuator. The loads that were applied to the roller

screw duimg these tests are comparable to those measured in the NASA stiff arm, engine

start and shutdown tests, TTB050 through TTB054. A maximum load of about 63.4 kips

was applied to the roller screw during a series of dynamic load tests.

II1.1. Description of the Experiment

Figure III. 1 shows the configuration of the drive train for the dynamic load tests. For

these tests the gear reduction and the motor were removed from the end of the roller

screw. The end of the screw was fixed so that no rotation was allowed at the point where

the motor attaches. This loading condition is more severe than one allowing large motion

between the roller screw and nut. A well lubricated (greased) nut was used for testing.

However, for the the lubrication to work effectively, motion is required to draw the

grease into the contact area. Since the end opposite the nut was fixed, only a small

amount of relative rotation between the nut and screw was achieved. The relative rotation

was the result of elastic deformation, wind up, of the screw along the length between the

fixed end and the nut. This situation simulates a severe application of the roller screw.

During the experiments the nut was located close to the bearings on the screw that absorb

the thrust load. This nut location was chosen to eliminate concerns of screw buckling

and/or of the excitation of low frequency modes in the hydraulic system.

Fig. II1.1 - Experimental Setup for The Dynamic Load Tests



The hydraulic system was used in a force control mode for these tests. Utilizing the

load cell for force feedback, large, high frequency, dynamic load commands can be

tracked. Since the load is stiff, as seen by the hydraulic system, the bandwidth of the

closed loop force control system is high. With a stiff load, and therefore small motions,

the hydraulic system has less of a tendency to saturate due to flow rate limits.

In building to the final, full amplitude test, several dynamic load tests were performed

on the screw. Prior to, and after the completion of all of the tests, the screw was visually

inspected for damage using a magnifying glass.

First the screw was loaded slowly to 65,000 lb in compression and then to 50,000 lb

in tension to statically test the experimental apparatus. Then 5 tests with load time

histories like the one shown in Figure 1II.2, except with a 20,000 lb peak load, were

performed to evaluate the control system and test stand. After determining that the

system was performing properly, the magnitude of the dynamic load was increased in the
successive tests. The load was increased until the final test with a 63,400 lb measured

peak load was reached. All of the dynamic load tests performed were similar to the one

shown in Figure III.2. This is a modulated load with a 6 Hz fundamental frequency. The

differences between each of the tests were in the magnitudes of the loads.

O
u

800O0

Axial Force vs. Time

60C00

4O000

2O000

-2OO00

-.4OOOO

...... Commanded Force

__ Actual App ied Force

Time (lee)

Fig. 111.2- Axial Force Applied During the 62 kip Dynamic Load Test

Table III. 1 shows the succession of the dynamic load tests that were performed. It was

not desirable to a perform 8 dynamic load tests in building to the final test as shown in

Table III.1. This was the result of a cautious approach to the completion of the

experiment. The reason for multiple tests at 40, 50, and 60 kip is that it was originally

hoped to perform the tests without involving the accumulator in the hydraulic circuit.
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However, the test standwas not able to generatethe commandedforces without the
accumulatorin thecircuit.

Table II1.1 - Tests With Greater Than 20 kip Commanded Load
Commanded Peak Measured Peak Measured Peak

Compressive Load Compressive Load Tensile Load

(kip)

30

(kip)

27.4

(kip)

19.7

WitMWithout

the

Accumulator

without

40 36.0 27.4 without

50 40.9 35.0 without

60 41.3 40.7 without

40 41.2 28.1 with

50 51.1 34.7 with

60 61.3 41.0 with

62 63.4 42.5 with

111.2. Results of the Experiment

After the tests were completed the testing apparatus was disassembled and an

inspection of the screw was performed. Visual inspection revealed nine sets of spots like

those shown in Figure III.3. Figure III.3 shows one set of spots corresponding to one

planetary roller inside the roller nut. There are nine such planetary rollers inside the

roller nut. The screw showed one set of spots for each roller. As would be expected,

these spots were located in the wear bands on the faces of the screw threads. Each set

includes spots on both faces of the screw thread, offset by a distance measured along the

helix as shown in Figure III.3. This indicates that the spots were generated during both

compression and tension of the screw.

Fig. 111.3- Sketch of a Set of Spots Corresponding to One Planetary Roller

Each of the spots is very roughly circular, with some elongation along the face, and

roughly 1 mm in height. A depth for the spots is not observable simply using a

magnifying glass. They might be described as a growth in the width of the wear band in
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the region where the rollers contacted the screw during the tests. Although, there is

probably a small amount of material flow in these spots, they would not be considered a

failure of the screw in practically any application. The result of these spots is probably a

decreased screw life caused by premature flaking on the face of the screw threads.

Although these spots were not expected, they are certainly not surprising under the

loading conditions. The particular roller screw and nut used are an SKF set with a non-

preloaded nut, a 48 mm nominal diameter screw, and 20 mm lead. This screw-nut

combination has a static load rating of 86,600 lb and a dynamic load rating (Li0) of

48,800 lb. The L10 rating is based on a 10 percent failure rate with one million

revolutions of the screw at the rated load. This dynamic load rating is almost

meaningless for the loading situation in this experiment. The applied loads were well

within the static load rating of the screw-nut combination. With the number of number

cycles completed in the tests it might have been expected to see no visual effects at all.

The displacement of the spots on opposing faces, and the shape of the spots, are well

within what might be expected from a kinematics analysis of the contact points on the

screw and a hertzian contact analysis for the contact area under the loads applied during

testing. From strain calculations the displacement due to wind up was estimated to be

about 2 degrees at a 60,000 pound axial load. The rotational stiffness of the nut mounting

is rigid in comparison to that of the screw. Therefore our best estimate of the total

angular displacement between the maximum rotation at full compressive load and full

tensile load is about 3.5 to 4 degrees. This was crudely verified with a measurement

during the tests. This is not of course an estimate of the travel of the rollers on the face of

the screw thread. An estimate of requires a detailed kinematics calculation. Such a

calculation was performed by persons at SKF using the information above, about the

displacement due to wind up. The results were provided in a proprietary document.

They supported the findings for the locations of the spots and the rough description of the

shape of the spots.

What is not explained by the kinematics and hertzian contact analysis is the visibility

of the spots. Only the shape and location of the spots is explained by this analysis. The

visibility of spots might be explained by a break down in the lubrication and a

corresponding increase in the friction in the contact area, causing a very high wear rate

and a small amount of material flow. It was suggested ,by SKF that a dry lubrication

might be better for this loading situation.

These tests answer the important question of whether the roller screw will withstand

this type of loading. It will withstand this type of loading with minor damage that will

perhaps decrease the life of the screw. There is still another important question that is left

unanswered by this testing however. What will the actual forces exerted on the roller

screw be during the engine start-up? This question is adressed in chapter V of this

report.
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IV. ACTUATOR MECHANICAL MODEL DEVELOPMENT

This chapter of the report describes the development of the mechanical model of the

roller screw actuator in the test stand in the EMA Laboratory. Model development, or

system identification, is a large problem to which there are many approaches. One

approach to model development is to write the differential equations describing the

system, assuming that the underlying physical principles are well understood, and then to

calculate and/or measure the individual parameters in the differential equations of the

model. Another approach is to try to fit ready made models, like transfer functions and

auto-regressive models, to experimentally measured data. The first approach, if

successful, results in a good understanding of the system and a model that applies to

many situations. It however may not be possible since measurement and/or calculation of

each physical parameter is often unrealistic. The second approach is the more efficient

but does not result in an understanding of the system. The resulting estimated model may

apply only to the data used in the model fit. The methods used here are a combination of

these two approaches.

\ -\ \-

"-_ ___ r _cS'_

Fig. IV.1 - Actuator and Experimental Setup for Model Development

Figure IV.1 shows the actuator for which the model was developed and the

experimental setup for the generation/collection of data. The mechanical system for

which the models were developed includes all the components from the roller screw nut

and cage back through the motor. For the mechanical model development there was no

power applied to the motor. Forces were generated on the nut using the hydraulic system

and measured with the load cell. The nuts translation up and down the screw was

measured with the LVDT.

A brief description of the methods used to develop the actuator models is now given.

First, a simple linear mathematical model was developed using common physical

principles, and rough calculations were made to estimate as many of the parameters in the



model as possibleusing applicablephysical principles and manufacturer'sdata. This
model is a rigid body modelwith aneffectivemassanddamping. Theeffectivemassof
the system was estimatedwith calculations. Thesecalculations are shown in the
Appendix A. The damping term could not be calculatedand had to be developed
experimentally. The behavior of the damping force, as a function of velocity was
developedby measuringthe force applied to the nut at severaldifferent steadystate
velocities. It is was noticed in the experimentaldata that there were significant
oscillationsin thevelocity responsethatcouldnotbeexplainedwith therigid body model
and the applied force. Therefore it was deduced that a higher order model with at least

two masses and one spring might be a better model. The parameters for two rigid body

models, a linear model and a model with nonlinear damping, were estimated using least

squares and experimental data. The parameters for the higher order model were found by

trial and error. The trial and error method utilized comparison of simulated responses to

measured responses.

IV.1. Generation of Experimental Data Used in
System Identification

Many sets of experimental data were generated for model development. All of the

data was generated using a position control loop in the hydraulic system. A position

command profile was generated prior to a test and then commanded to the position

control system, which used the LVDT as feedback and the cylinder for actuation. The

forces exerted on the nut and the position of the nut were logged, and used in the system

identification process.

In order to gain an understanding of the nature of the damping forces several constant

velocity tests were run. The data for one of these tests is shown in Figure IV.2. Constant

velocity tests were run for 0.1, 0.2, 0.3, 0.4, 0.5, -0.5, 0.6, 0.7, 0.8, 0.9, 1.0, -1.0, 1.5,

2.0, 2.5, 3.0, 3.5, 4.0, 5.0, and -5.0 in/s. Above a velocity of 5 in/s the flow of the

hydraulic pump was insufficient to reach the commanded velocity.
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The actual force data collected is nosier than that shown in Figure IV.2. Also,
velocity is not measureddirectly with the LVDT. The data shown in Figures IV.2
through IV.5 are the resultsof filtering the raw position and force data, and then
numerically differentiating the position datato obtain velocity. For the data in all of
thesefigures,a 25 Hz, 12pole,zero-phasefilter wasusedon both theraw force andthe
raw positiondata. A 12pole,zero-phasefilter is obtainedby usinga 6 poleButterworth
filter. The data is passedthroughfirst in the forward directionand thenagain in the
reversedirection, resultingin twice the attenuationand zerophaseshift. Theeffectsof
the filtration processwill be seenin figuresin the next sectionof this report. To obtain
velocity second order, central difference, numerical differentiation was utilized.
Accelerationwasalso calculated,and usedin parameterestimation. Accelerationwas
foundusing numerical differentiation of the velocity.

For least squares estimation of the parameters in the models, a more dynamic loading

situation is desired than that obtained with a constant velocity command. Therefore

several tests were run with square wave velocity profiles commanded to the position

controller. The data from one, two, and three Hertz velocity commands are shown in

Figures IV.3, IV.4, and IV.5 respectively.
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Fig. IV.3 - System Response to a 5 in/s, 1 Hz Square Wave, Velocity Command
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Fig. IV.5 - System Response to a 5 in/s, 3 Hz Square Wave, Velocity Command

IV.2. Dynamic Model Identification

As mentioned previously, in order to obtain an understanding of the behavior of the

damping in the EMA system, many constant velocity tests were completed. The position

plot in Figure IV.6 shows the raw and filtered position data corresponding to a negative 5

in/s velocity command. The data used to develop the friction model was taken from the

end portions of the constant velocity tests, where the velocity has reached steady state.
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Therawandfiltered forcedatacorrespondingto thepositiondatain FigureIV.6 is shown
in FigureIV.7.

6 Position vs. Time
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Fig. IV.6 - Position of the Roller Nut During a -5 inls Velocity Move

.

10o0 Force vs. Time

| I I I

it''' &
-70o0. Time (sec)

Fig. IV.7 - Force on the Roller Nut During a -5 inls Velocity Move

The average force and velocity were found from the steady state data in each of the

constant velocity tests. Then these steady state values were plotted against each other as

shown in Figure IV.8. Several curve fits were experimented with in an attempt to find a

mathematical expression for the relationship between the damping force and the velocity.

It was found that a logarithmic function resulted in a fairly simple model with a good fit.
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Fig. IV.8 - Force Applied to the Nut as a Function of Steady State Velocity

With an understanding of the damping force, an attempt at writing the differential

equations that describe the system can be completed. The models that were used for the

actuator are presented in Figure IV.9, equations (IV.l) and (IV.2), Figure IV.10 and

equations (IV.3) and (IV.4).

X

F
_X B

Fig. IV.9 - Rigid Body, 2nd Order Model

F = M ._+ B.:q ................................................................................................ (IV.l)

F= M.:_+Ff

0 for :k < 0.001
where: Ff= sign(R).(b.ln_:_)+c) forR>0.001 ............ (IV.2)

{11 for_>Osign(:_) = - for :k< 0

Both a linear and a nonlinear rigid body model are presented above. Equation (IV.l)

represents a typical linear model for the actuator and equation (IV.2) is basically the same

model with a nonlinear damping force which is a logarithmic function of velocity. It is
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importantto notethatthis modelis linearin thecoefficientsb andc. This is an important
quality for a leastsquaresmodelfit.

Fig. IV.lO - 4th Order Model

1) F = M 1.RI +BI'_I +k'(Xl-X2)

2) 0= M 2-R 2 +B 2.:k 2 +k.(x 2-xl)
......................................................(iv.3)

1) F = M l.xl +Ffl+k'(Xl-X2)

2) O= M 2-x2 +Ff2 +k'(x2-xl)

where:
0 for :ki < 0.001Ffi = sign(xi).(b i.lnl_xil)+ci ) for:ki __0.001

{11 f°r :ki > 0sign(_li) = - foril i < 0

....................... (IV.4)

The models represented by equations (IV.3) and (IV.4) distribute the effective mass of the

rigid body model between two locations separated by a spring. These models are

important if the higher frequency oscillations in the velocity response of Figures IV.2

through IV.5 are to be accounted for. The spring in the model is due mainly to torsional

wind-up of the roller screw. This means that the effective masses associated with Ml

would come from the nut, part of the inertia of the screw, and perhaps the bearings. The

effective masses associated with M2 would come from the gear reduction and motor. M2

is by far the greater of the two effective masses.

IV.3. Parameter Estimation

Parameter estimation is a significant problem within the larger problem of system

identification. After a parametric model has been identified, the problem of determining

the coefficients for this model still remains. Parameter estimation is the determination,

using experimental data, of the coefficients in the differential equation describing the

system. For the EMA models described by equations (IV.l) and (IV.2), the results of

parameter estimation are the coefficients M, B, b, and c.

There are many methods of performing parameter estimation. Some good texts that

deal with parameter estimation methods are Ljung and Glad (1994), and Astrom and

Wittenmark (1995), and Ljung (1987). Most of these methods utilize linear regression
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modelsandleastsquares.Leastsquaresis utilized in the systemidentificationprocedures
describedhere. Leastsquaresmaybeappliedto anysetof equationsof theform:

Y(mxl) = O(mxn) "0(nxl)

where: m > n,

Y and • are known,

0 is to be determined

.........................................................................or.5)

For the parameter estimation problem, the vector Y and the matrix O in equation (IV.5)

must be either measured variables or functions that can be calculated from the measured

variables. The vector 0 is the vector of parameters to be determined in the least squares

sense. • is matrix formed using the regressors. Specifically, in the estimation problem,

the regressors are those functions that are multiplied by the parameters in the differential

equations. There are no restrictions in linear regression that the regressors be linear

functions of the measured data, only that the equations are linear in the parameters to be

determined.

Equation (IV.5) is the standard linear reqression model that may be solved using the

pseudo inverse matrix, • .

O* = (OTo)-Io T .......................................................................................... (IV.6)

The least squares solution is found by multiplying the pseudo inverse by the known

vector.

6 = O*Y .......................................................................................................... (IV.7)

If • is mxn and m>n, the pseudo-inverse solution for the parameters, O, satisfies the

following least squares condition:

rndn[[Y - O1)[[2 .................................................................................................. (IV.8)

where H denotes the Euclidean norm.

The differential equations in model equations (IV.l) and (IV.2) are linear in the

parameters. Therefore, a vector matrix equation in the form of equation (IV.5) may be

found by writing the differential equation at the instants in time where the force and the

derivatives of x are known from experimental measurement. For the linear model the

elements of equation (IV.5) are:
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' F(1)] [ R(1) /((1)

e!2)[ j,!2) ,!2)

F i,/ ,ii)
F(m)J [_(m) _(m)

{M}o= B ..................................... (IV.9)

For the nonlinear model the elements of the equation (IV.5) are:

"F(1) ]

F(2)

,

V(i)]

F(m)

R(1) sign(:k(1))- ln{[/_(l_) sign(x(1))

i(2) sign(:k(1)). Inl_:k(2_) sign(x(2))

R(i) sign(5_(i)), ln_R(i_) sign(5_(i))
: : -

i(m) sign(_(m)).lnl_(m_) sign(:_(m))

.... (IV.IO)

In equations (IV.9) and (IV. 10) each row of F and • correspond to one sample time at

t = t i , and m rows are formed for m samples used in the estimation calculation.

In equation (IV.8), it is seen that the least squares solution will minimize the 2-norm

size for the vector of errors, {F - q)() . In other words, the least squares solution for the

model parameters, minimizes the size of the vector of errors between the measured force

and the force calculated using the estimated parameters and the regressors (measured

displacement, velocity, and acceleration).

The parameter estimation method described above is applicable to continuous time,

linear and nonlinear differential models. The only restriction is that the model be linear

in the parameters. There is a source of error in the method that is caused by the need to

numerically calculate two derivatives of the position measurement, x, at each sample

time. This calculation will amplify the high frequency content of x, which is often

associated with noise. There are two possible solutions to this problem: 1) directly

measure the acceleration with an accelerometer and the velocity with a velocity sensor,

or 2) filter the position data before the derivative is calculated. The least desirable, but

most cost effective method, method 2), was employed here.

The most common estimation methods use auto-regressive and/or discrete time

models. While these methods are perhaps the simplest to use, their application is

restrictive in the types of systems to which they apply. In the auto-regressive model the

regressors are linear functions of the measured inputs and outputs of the system (Ljung

and Glad, 1994, pg. 233). While the discrete time models are in general, not restricted to

linear regressors, it is difficult to describe the nonlinearities in discrete time.

Nonlinearities are usually best described in continuous time, and are not easily

transformed to and from discrete time as are linear models such as transfer functions.
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The basic process used in the parameter estimation is outlined below.

1. Excite the system with a dynamic input force, while recording the output of the

position sensor, the LVDT, and the output of the force sensor, the load cell.

• The force is generated using a velocity profile command, a position control

loop, and the hydraulic system.

2. Post-process the recorded data.

• First the position and force are calculated from the outputs of the sensors.

Then this calculated position and force is filtered with a 12 pole filter with no

phase shift. Finally, the first and second order derivatives of the position are

calculated numerically to find velocity and acceleration.

3. Solve a set of equations, using the least squares method, to estimate the parameters.

• In most cases a set of about 800 equations are formed using 800 samples, out

of 1000 recorded, from a data set of one second duration, with a sample

frequency of 1 kHz. Only 800 equations are formed to eliminate the data on

either end of the set, which has undesirable end effects caused filtration and

differentiation.

4. Attempt to validate the model.

• This is done by comparing the estimated force to the measured force. The

estimated force is calculated with the estimated parameters and the regressors.

• It is also done by simulating the estimated model using the measured force

from other data sets as the input to the model.

Many passes at the estimation procedure described above were performed using

several different sets of data, several slight model variations, and several different cutoff

frequencies for the filters. In each case the models were validated using the methods

described in step 4 above. The following is a presentation of the results of one the best

estimation passes, as determined by validation, and a discussion of the affects of
variations.

The results of the parameter estimation for one pass of the procedure described above

are presented in below in Table IV. 1.

Table IV.I - Parameter Estimation Results using the 2 Hz
Square Wave Data Set with a 15 Hz Data Filter

2nd Order Linear Model 2nd Order Nonlinear Model

M 60 lb.s 2/in M 58 lb-s 2/in

B 580 lb.s/in b 502 lb

...................... c 1354 lb

The data in Table IV. I corresponds to a parameter estimation for the models in equations

(IV.I) and (IV.2) using the raw data from Figure IV.4. The raw position and force that is

shown filtered with a 25 Hz filter in Figure IV.4, were filtered with a 12 pole, 15 Hz, zero

phase shift, low pass filter before differentiation and estimation. It was found, through
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experimentationthat, a 15 Hz filter would filter out the majority of the velocity
oscillationsthatwereassumedto becausedby thedistributionof theparameters.

Figure IV. 11showsthe estimatedforce found by calculatingthe right hand side of
equations(IV.l) and (IV.2) using the estimatedparametersand the accelerationand
velocity used in parameterestimation. It also shows the measuredforce used in
estimation. Neither the linear nor the nonlinearmodelsare significantly better. The
overall shapeseemsto be goodin general. The excursionsmight be accountedfor by
usinga higherordermodelanddatafrom collocatedsensors,which werenot availablein
the setupfor thetestingperformed.

Force vs. Time
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Fig. IV.11 - Estimated Force and Measured Force Comparison

If a data filter with a higher cutoff frequency is used then the velocity and acceleration

have larger and higher frequency oscillations, giving rise to larger variations between the

estimated force and the measured force. If a lower cutoff frequency is used then

estimation results in a large mass value. This may be caused by attenuation of the rigid

body acceleration which is found by calculating a second derivative of the position data.

In general choosing the cutoff frequency for the data filter represents a trade off between

filtering out the distributed parameter dynamics and the noise, and in the retention of

information describing the rigid body motion of the system.

The models represented by equations (IV.I) and (IV.2) and the parameters in Table

IV. 1, result in fair simulation results as will be seen in the next section of this report. The

masses found with estimation are somewhat different from that estimated with

calculations in the Appendix A, 51 lb- s 2 / in, but are reasonable values.

The model shown in Figure IV. 10 is a higher order model for which the parameters

could not be estimated with least squares. The reason for this is that the position variable,

x2, was not measured in the data acquisition process. Therefore, the parameters for this

model were estimated by trial and error. Initial guesses at the parameter values were

obtained with rough inertia and rough spring constant calculations, and by distributing the

IV.11



parametersof therigid body model. Themodelwasdevelopedusing simulationsof the
systemwith a force input from one of the datasetsin FiguresIV.2 throughIV.5. The
outputof the model,the velocity of M], wascomparedwith the measuredvelocity of the
nut. Theparameterswerethenmodifiedbasedon thedifferencesbetweenthe simulated
velocity and the measuredvelocity. The parametersresulting from this procedureare
givenin TableIV.2.

Table IV.2 - Trial and Error Parameter Estimation Results for the 4th Order Models

4th Order Linear Model

k

MI

B1

M2

Bz

4th Order Nonlinear Model

150,000 lb/in k

6 lb. s2 / in MI

180 lb.s/in bi

66 lb. s2 / in

180 lb-s/in

el

M2

150,000 lb/in

6 lb. s 2 / in

100 lb

700 lb

66 lb. s 2 / in

.................... b I 95 lb

.................... c2 667 lb

IV.4. Model Validation/Simulation Results

In order to validate the model parameters given in Table IV.l, simulations were

performed using the measured forces from all of the data sets in Figures IV.2 through

IV.5. The linear and the nonlinear model were simulated simultaneously with the same

force input. The outputs of the models are compared to the measured velocity of the nut

in Figures IV. 12 through IV. 15.

7

6.

5

4

3

2

1

0

_1 (

-2

-3

-4

-5

-6

-7

Velocity vs. Time

[_ 2r_ Ordw NordinmrJ

i i I _ q 1 i I I

I Time (sec)

Fig. IV.12 - Simulated Velocity Using the Least Squares Models
with the Force from the -5 inls Constant Velocity Command
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Velocity vs. Time
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Fig. IV.13 - Simulated Velocity Using the Least Squares Models
with the Force from the 5 in/s, 1 Hz Square Wave, Velocity Command
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Fig. IV.14 - Simulated Velocity Using the Least Squares Models
with the Force from the 5 in/s, 2 Hz Square Wave, Velocity Command
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Fig. IV.15 - Simulated Velocity Using the Least Squares Models
with the Force from the 5 in/s, 3 Hz Square Wave, Velocity Command

It is obvious from the previous figures that the best match between the measured and

simulated velocities is for the 2 Hz square wave data. This is expected since the

parameter estimation was performed using this data. One obvious problem with the

models is the large error in the steady state velocity to the approximately constant force

input. This is shown in Figure IV.12. A very good steady state response is obtained by

estimating the parameters using the constant velocity data set. It is also possible to

achieve a compromise between the steady state response and the dynamic response by

estimating the parameters with a data set containing some of both.

From the previous four figures it is difficult to state that either the linear or the

nonlinear model is a better match. Both models follow the rigid body trajectories fairly

well. Neither, however, capture any of the higher frequency oscillations which are

probably the effects of unmodeled disturbances and a system that might best be modeled

with a higher order model.

To demonstrate that a higher order model might better capture the complete behavior

of the EMA system, the 4th order trial and error model was estimated. This model was

simulated using the same four input forces that were used in the simulation of the rigid

body models. The results of these simulations are demonstrated in the following four

figures.
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Fig. IV.19 - Simulated Velocity Using the Trial and Error Model
with the Force from the 5 in/s, 3 Hz Square Wave, Velocity Command

As seen in the previous four figures the higher order model does capture some of the

higher frequency oscillatory behavior. The simulated response and the measured

response match very well for the constant velocity and the 1Hz data. This would be

expected since the trial and error estimation process mainly involved these two data sets.

In Figures IV. 18 and IV. 19 there is a distinct difference between the simulated response

and the measured response in the regions where the velocity is near zero. A better match

between the behavior of the real system and the system response should be obtainable

using a least squares estimation rather than the trial and error method. This requires a

measurement of the position of the motor along with the measurement of the position of

the nut.
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V. MODEL SIGNIFICANCE

The significance of the estimated models is best demonstrated by considering the

actuator in an application, and by considering the purpose of a model. In application

there will be a significant load attached to the nut of the actuator and an actuation force,

motor torque, will be applied at the motor side of the model. The load may experience

large disturbance forces. The purpose of the actuator model is controller design and

performance analysis of the actuator as it is used in an application.

V.1. Closed Loop Actuator-Load System

In the test setup used for system identification, the most significant mass, M2, is at the

far end of the spring from the applied force. Therefore the effects of the spring are

apparent in the test data. In application however, the motor will be used to develop the

actuation forces. One might make the mistake of assuming that the spring constant is not

important due to the size of the mass, Ml. But the actuator will probably be driving a

very significant load, like the Space Shuttle Main Engine (SSME) for example.

Therefore, the forces applied at the nut will still be significant, and the effects of the

spring in the higher order model may be profound.

For the purposes of this discussion the actuator is considered part of a closed loop

control system with a large mass attached to the nut. Linear models are used for the

actuator. An actuation force, the motor torque, is generated using a proportional-

derivative controller. The dynamics of the motor controller are considered fast, and are

ignored. The value for the load mass used, is that given for the equivalent mass of the

SSME in Lominick (1973), 54.53 lb. s 2 /in. Figures V. 1 and V.2 show this system with

a rigid body model for the actuator.

X

P

Fig. V.I - Rigid Body Model of the Actuator and Load



I I xkp + k d • s
Xc°mmand + (M + M engine )" s2 + B. s

Fig. V.2 - Closed Loop Block Diagram with the Rigid Body Model

If the distributed mass model for the actuator is used, two very different models

result, depending on whether the displacement used for the feedback is measured at the

motor or at the end of the actuator. Figure V.3 shows the mechanical model for the

distributed mass actuator and load. Figures V.4 and V.5 show the closed loop block

diagrams for the two different closed loop systems.

_ AkA !
' _/ V _f_ M2

Fmotor

Fig. V.3 - Distributed Mass Model of the Actuator and Load

The following two polynomials are defined to simplify the representation of the actuator's

transfer function:

A(s) = MtM2 s4 +(MtB 2 +M2Bl)S 3 +(k(M t + M2)+ B1B2)s 2 +k(B 1 + B2)s

A(s) = (Mt s2 + BIS + k)

where: M t = M 1 + M engine

.....(v.])

Xcommand
+ kp + k d .s

A(s) ) x2
a(s)

Fig. V.4 - Closed Loop Block Diagram with the Distributed Mass Model
and Feedback of the Motor Position
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Xcomman d + _ kp + k d .S

k

6(s)
X 1

Fig. V.5 - Closed Loop Block Diagram with the Distributed Mass Model
and Feedback of the End of Actuator Position

The closed loop system in Figure V.2 has one zero and two poles. Using the

parameter values for the linear system from Table IV.I, the controller gains may be

chosen using some design criteria. If the controller gains are chosen such that the two

resulting poles have a 10 Hz bandwidth and a 0.707 damping ratio, the following system

results:

Controller Gains: Kp = 452000, K d = 9595

Closed Loop Zeros: s = -47.1

Closed Loop Poles: s = -44.4 + 44.4i

The 10 Hz bandwidth designed for is good only for "small signal" analysis. Some

rough calculations are discussed here to determine how reasonable this design is in terms

of the control authority needed. Suppose that a 10 Hz, sinusoidal, position profile with an

amplitude, A, in inches, is to be generated. The maximum velocity due to this sinusoid is

A.(2.n .10) in/s and the maximum acceleration is A.(2.n .10) 2 in/s 2 . The force

required at the maximum velocity is B. :k = B. A. (2. n • 10) lb. The force required at the

maximum acceleration is M. _ = M. A. (2. rr • 10) 2 lb. Knowing the maximum torque

of the motor (1150 in.lb) and the gear ratio between translation and rotation, the

maximum value of the amplitude, A, can be found at which the motor will saturate. From

the maximum velocity,

1150 in. lb

Amax = (0.03133 in / rad).(580 lb-s/in). (2.n .10 rad / s) = 1 in.

From the maximum acceleration,

mma x

1150 in- lb

(0.03133 in / rad).(114.5 lb-s 2 / in). ((2 .n .10) 2 rad / s 2)

= 0.08 in.

The maximum amplitude is determined by the acceleration force. If the maximum torque

allowed for the calculations above, is derated to the continuous torque of the motor then

the amplitude will be about one third of this value. An amplitude of 0.08 inches may

seem small, but at the motor this amplitude corresponds to about 145 degrees of rotation.
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If the same controller gains found for the rigid body model are used for the distributed

mass models then one system similar to the rigid body system results, and one very

different system results. The closed loop system with position feedback from the motor

has the following poles and zeros:

Closed Loop Zeros: s = -47.1, - 1.49 + 49.8i

Closed Loop Poles: s = -69.0 + 58.2i, - 6.55 + 452i

This system is similar to the rigid body model. Two of the poles are near those of the

rigid body system. The other two poles are near the two complex zeros, which will

somewhat cancel their effects. The similarity is best seen in the magnitude and phase

plots for these two systems which are shown in Figure V.6. Although these two systems

are similar, consideration of the spring constant is important, especially in the actual

system where the spring constant changes with time as the nut travels along the screw.

5.00

000

-5,00

"_ -10.00
.,..,
l=

lU
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-20.00

-25.00

Magnitude Plot
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1 10 100 1000

Frequency (radla)

45,00
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o

Q.

0.00

-45.00

-90.00

1 10 100 1000

Frequency (radl$)

Fig. V.6 - Magnitude and Phase Plots for the Two Closed Loop Systems: the Rigid Body

System and the Distributed Mass System with Motor Position Feedback
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The last system that is discussed here is the one with the distributed mass model and

position feedback from the end of the actuator. This closed loop system is shown in

Figure V.5. If the same controller gains found for the rigid body model are used in this

model a very different system results. The closed loop poles and zeros are:

Closed Loop Zeros: s = -47.1

Closed Loop Poles: s = -36.3 + 31.8i, 33.5 + 78.6i

There are two poles that are well into the right half plane. The root locus plots for this

system show that the two purely imaginary poles created in the open loop system, by the

addition of the spring, will move into the RHP for any proportional derivative gain set in

the closed loop system. In the real system, the two open loop poles will be lightly

damped, and there will be some range of gains for which this system is stable. Also, if

the spring constant is increased, these two poles move away from the origin and have

further to travel to get to the right half plane given the same damping ratio.

In general, as would be expected, the two open loop poles created by the addition of

the spring to the model become less significant as the spring constant is raised. The

farther they are from the origin the smaller their residues become. However, it has been

shown here that the spring constant related to windup of the screw in this actuator, is low

enough that it warrants careful consideration in controller design and in the performance

analysis of the system. While it would be best to measure the position of the load

directly, in terms of the accuracy of the control system, this is very dangerous in closed

loop control with this type of actuator. Some type of dynamic compensation should be

added to the controller if this type of feedback is to be used.

V.2. Effects of Engine Startup Transient Loads

in the Closed Loop Actuator-Load System

This section of the report addresses the question of what forces might be expected on

the screw of the actuator during engine start up and shut down. In order to address this a

model of the engine and stiff arm system is compared to a closed loop engine and

actuator system.

The loads that were applied to the roller screw during the dynamic load tests

described in Chapter III are comparable to those measured in the NASA stiff arm, engine

start and shutdown tests, TTB050 through TTB054. A stiff arm was used in place of the

thrust vector control (TVC) actuator during these tests. A simple model for the stiff arm

and engine system is shown below in Figure V.7. The forcing function is that exerted on

the engine during start up and shut down, which is not explicitly known. The engine

mass in this model is Lominick's equivalent engine mass. The spring constant for the

stiff arm can be estimated from data in Laszar (1995). Using the data in this

correspondence the lowest possible the spring constant was found to be about 175000

lb/in. The lowest value was chosen because the force on the spring in the model below

will be smaller at high frequencies for lower spring constants.
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Fforcing

x

Mengine

Fig. V.7 - System Model For the Stiff Arm Tests

The force on the stiff arm is the force exerted on the spring in Figure V.7. It is strictly

a function of the forcing function on the engine for this model. The transfer function

representing this relationship is given in Equation V.2 below. Using Lominick's

equivalent engine mass and the spring constant of the stiff arm this transfer function can

be evaluated. In Figure V.9 the magnitude ratio for this transfer function is plotted.

Fstiff ann (s) _ kstiff arm ............................................................... (V.2)

Fforcing(S) MengineS 2 + kstiffarm

Again, as for the closed loop controller discussion in the previous section of this

chapter, the actuator is considered part of a closed loop system with the engine mass

attached to the nut. The distributed mass, linear model with motor position feedback is

used for the actuator. The parameters values for this model are given in Table IV.2. An

actuation force, the motor torque, is generated using a proportional-derivative controller.

The dynamics of the motor controller are considered fast, and are ignored. If the position

command to the controller is constant then the model in Figure V.8 applies. With the

constant command proportional control and derivative control are equivalent to a spring

and a damper, respectively.

Fforcing

X 1 X 2

Msn_/____>_Lf_2 _kdd_

Fig. V.8 - Closed Loop Actuator Load System with a Constant Position Command,
and a Proportional Derivative Controller Using Motor Position Feedback.
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The force on the screw is the force exerted on the spring in Figure V.8. It is strictly a

function of the forcing function on the engine for this model. The transfer function

representing this relationship is given in Equation V.3 below.

Fscrew (s) N(s)

Fforcing (s) A2(s)

where:

N(s) = k(M2 s2 +(B E + kd)S+ kp)

A2(s) = MtM2 s4 +(Mt(B 2 + kd)+ MEB1)s 3 +(Mt(k +kp)+

MEk 4-BI(B 2 4- kd))S 2 +(Bl(k+ kp)4-(B2 + kd)k)s+ kkp

M t = M 1 + M engine

....................... (V.3)

The controller gains are again chosen, as in the previous section, using the rigid body

model in Figure V.2 and the data for linear system in Table IV. 1. If the controller gains

are chosen such that the two resulting poles, in the rigid body system, have 1 Hz, 10 Hz,

and 100 Hz bandwidths and a 0.707 damping ratio, then following three sets of controller

gains result:

1 Hz Closed Loop Bandwidth: Kp = 4520, K d = 438

10 Hz Closed Loop Bandwidth: Kp = 452000, K d = 9595

100 Hz Closed Loop Bandwidth: Kp = 45200000, K d = 101200

Using the controller gains above, the data for the distributed mass, linear actuator

system in Table IV.2, and the Lominick's equivalent engine mass the transfer function in

Equation V.3 can be evaluated. In Figure V.9, the magnitude ratios for this transfer

function, with the three different sets of controller gains, are plotted along with the

magnitude ratio of the stiff arm system.
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The magnitude plots above demonstrate that the forces that can be expected on the

actuator are very comparable to that measured by the stiff arm. The resonant peaks for all

four systems are quite high. In reality these peaks will probably be limited somewhat due

to unmodelled damping. The different controller gains did not affect these magnitude

ratios as much as one might have expected. This is due to the large equivalent mass at

the motor end of the actuator, representing a large impedance that is independent of the

controller gains. The reason that the plots for the actuator systems are so similar to that

for the stiff arm is that the spring constant of the screw is similar to that of the stiff arm.

A low spring constant for the screw, while presenting difficulties in controller design,

may be beneficial in terms of the reducing the transient loads exerted on the screw.

If a stiffer screw is used then more of the energy in the forcing function will be

transferred to the screw. For a stiffer screw the magnitude plots for the actuator systems

in Figure V.9 would have higher cutoff frequencies. In this ease it would be difficult to

predict the forces on the screw using the data from the stiff arm tests since the stiff arm

may not have measured the higher frequency content of the forcing function. It should be

noted here that the stiffness of the screw is actually a function of the location of the nut

on the screw.

As a final note, the resonant frequency of the stiff arm model should be discussed. It

is suspiciously close to the fundamental frequencies of the forces in the stiff arm data in

the TTB tests. In fact, it falls almost exactly in the middle of the 6 to 10 Hz range in

these tests. It therefore may be a poor assumption to say that the forcing function during

engine start up and shut done has a more significant content at this frequency than at any

other.
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VI. OPTIMAL COMPONENT SELECTION FOR
ELECTROMECHANICAL ACTUATION

VI.I. Introduction

To achieve an optimal design for any electromechanical actuator, the individual

components of the actuator must be properly selected with respect to one another. Here,

the definition of optimality involves three basic issues:

1) power transfer to the load,

2) efficiency, and

3) torque requirements.

Clearly, with these three considerations, optimality is found by maximizing efficiency

and power transfer to the load while minimizing torque requirements. This report chapter

contains the appropriate analyses for component selection, based on component

parameters. The analyses are based on a sinusoidal actuator velocity profile.

The ultimate objective for any actuator is to provide power to a load. Hence,

maximum power transfer to the load is the primary optimization objective. Efficiency

and torque requirement issues are secondary. Thus, guidelines for maximum power

transfer are developed, and the impact of these guidelines on efficiency and torque

requirements are explored.

VI.2. Nomenclature

nrn number of motors mno z

bm motor viscous damping k,o z

Jm motor rotor moment of inertia co

Tde v motor developed torque

Ng gear ratio m

bg gearhead viscous damping
referred to the output side s

gearhead moment of inertia

referred to the output side

screw shaft viscous damping

screw shaft moment of inertia

nut mass

nozzle assembly viscous

damping

V nut

b, Ph

J_ PL

mnu t

b?loz

nozzle assembly equivalent mass

nozzle assembly spring constant

angular frequency of excitation

angular velocity of the motor

rotor

angular velocity of the screw

shaft

translational velocity of the nut

screw pitch

load power

efficiency



VI.3. System Definition and Analysis Description

Within this section, the system under analysis is defined. A system model is

developed and converted to an equivalent electric circuit, and the analysis procedure

employed to determine the criteria for an optimal design is presented.

VI.3.1. Actuator Model

The actuator under consideration for this study is simply illustrated in Figure VI.1.

Note that the system is composed of an arbitrary number of motors, a gearhead, and a

roller or ball screw. Each motor, the gearhead, and the screw shaft are rotational

components and can each be modeled by a moment of inertia and a viscous damping

coefficient. In addition, the motor contains a torque source, and the gearhead contains a

velocity scaling dependent on the gear ratio. The nut is a translational system and

modeled by an equivalent mass. Note that translational damping can be equivalently

lumped with the viscous damping on the screw shaft. The scaling from rotary shaft

motion to linear nut motion is defined by the screw lead.

The differential equation for motion of the motor rotor is presented in (VI.1). The

gearhead motion is described by the differential equation provided in (VI.2). Screw shaft

and nut motion are both governed by the differential equation presented in (VI.3).

nmTa__ - nzT, n,om = n,,J,,, -_ + n,b,,,O = ...................................................... (VI. 1)

1--_---Tmout = Tgout + j g dOS + b gOs ................................................................. (VI.2)
Ng ' " dt

( dv"')+JsdOsTg.o,, = Ph F,,ct - F_d + m,,m -_ _ + bs6 , .................................... (VI.3)

nl J T_,oltl

n m motors }////////////

<J/ screwshaft k,.
gearhead

Vnul_ Facl

Load

nut _

J_

Fig. VI.1 - Actuator Schematic

VI.3.2.

Models for active and passive loads will be developed within this section.

Consideration of both load types increases the general applicability of the design

optimization methods presented herein.
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Vl.3.2.1. Passive

Passive loads are defined as those loads which impose no active force on the actuator.

Hence, they are purely mass, spring, and damper systems as illustrated in Figure VI.2.

The differential equation governing translational motion of the load is presented in (VIA).

dv.., SFact = m"°z dt _ bn°zvnut + kn°z Ynut dt .................................................... (VI.4)

Fact

mass

spring

damper

Fig. Vl.2 - Passive Load Schematic

Vl.3.2.2. Active

Active loads are loads which provide an active force on the actuator, as illustrated in

Figure VI.3. This is the case in the thrust vector control application where acceleration

and engine thrust must be borne by the actuator. In such a case, the load will contain an

active force source in addition to a mass, spring constant, and damping coefficient. The

mathematical model of this case is described by the differential equation in (VI.5).

dvnut + bnozVnut + kno z fVnu t dt ........................................ (VI.5)Fact - Fl°ad = m"°z dt

Fact

FIoad

mass

spring

damper

Fig. VI.3 - Active Load Schematic
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VI.3.3. Equivalent Circuit

The load models above can be represented by an equivalent electrical circuit. In order

to do so, we must define all analogous mechanical and electrical variables. We select

voltage (_) to be analogous to torque (T) in the angular sense and force (F) in the

translational sense. Also, we select current (i) to be analogous to angular velocity (0) in

rotary motion and linear velocity (v) in the translational sense. Analyzing the differential

equations associated with inertia (J) and viscous damping (b), one finds that in light of

our selected voltage and current analogies, inertia is analogous to inductance (L), and

viscous damping is analogous to resistance (R). For translational motion, mass (m) is

analogous to inductance, damping is analogous to resistance, and compliance (reciprical

of spring constant, k) is analogous to capacitance (C). The mechanical/electrical

analogies are presented in Table VI. 1, and the resulting equivalent circuit is provided in

Figure VI.4 for passive and active loads.

Table Vl.1 - MechanicallElectrical Analogies
ROTATIONAL SYSTEMS

Fundamental Analogies t__ T i _ 0

Mechanical Relationship

Inertia:

T= j d_

Electrical Relationship

Inductance:

_=L di
dt

Resulting Analogy

L---> J
dt

Viscous Damping: Resistance:

T = bO _ = Ri R--+ b

TRANSLATIONAL SYSTEMS

Fundamental Analogies t__ F i _ v

Resulting AnalogyMechanical Relationship

Mass:

dv
F=m--

dt

Compliance:
l

F=k Ivd_
q

0

Electrical Relationship

Inductance:

u.=L di
dt

Capacitance:
I

,f_=-- id_
C,

0

Z--_ m

1
C--_-

k

Damping: Resistance:

F = bv _-= Ri R --_ b
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VI.3.4. System Analysis

Analysis of power transfer to the load, efficiency, and input torque in a dynamic sense

would be highly dependent on the commanded motion profile. Hence, to obtain general

results regarding component selection for optimal performance, a fixed motion profile

must be considered. A sinusoidal velocity profile was adopted for this purpose. Clearly,

most actuation applications will require a time varying velocity response that will contain

both positive and negative excursions from null. The selection of a sinusoidal velocity

allows consideration of this case and is amenable to multi-frequency analysis consistent

with a Fourier series expansion of non-sinusoidal profiles. Furthermore, it may often be

possible to determine a dominant frequency within an actuator's typical profile, thus

optimizing about this frequency is reasonable.

The selection of a sinusoidal steady-state analysis allows the equivalent circuit to be

represented in the frequency domain employing phasor methods. Such techniques

neglect transients and focus on the sinusoidal steady-state solution to the differential

equations defining the response of the network called the forced response. In the phasor

domain, complex variables are indicated by overbars. The magnitude of the phasor is

defined as the rms value of the sinusoid it represents, and the phase angle of the phasor is

defined as the phase angle of the function of time referenced to the cosine. For our

analysis, we define impedance as the ratio of the torque to velocity phasors in the

rotational sense and the ratio of the force to velocity phasors in the translational sense.

Impedance for the passive elements is derived from the defining differential equations.

Table VI.2 defines the impedances required for analysis of the circuits in Figure VIA.

Table Vl.2 - Impedances of Passive Elements
ROTATIONAL ELEMENTS

Time Domain Frequency Domain

Viscous Damping T = b0 T = bO

_ - -T = jmJ0
Inertia T = J dt

TRANSLATIONAL ELEMENTS

Time Domain Frequency Domain

Damping F = bv P = b_

dv ff = jo3m_
Mass F = m_-

t -- k
F = -j--_

Compliance F = k v dx m
I

0

The equivalent circuit for the system in the frequency domain is illustrated in Figure

VI.5 for a passive load and Figure VI.6 for an active load. Note that both figures

illustrate the reduction of the circuit to a single-loop circuit with all quantities referred to

the equivalent motor.
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While the forthcoming analysis will be generalized in terms of impedance values and

forcing functions, actual data and frequency justification for the SSME TVC application

will be presented later in this report.

VI.4. Passive Load Analysis

Within this report section, guidelines for optimal component selection and

specification are developed for actuators to be utilized in applications with passive loads.

In many applications with a source (motor) and passive load, an equivalent gearing can

be selected to act as an impedance matching transformer to maximize power transfer to

the load. The internal impedance of the gear mechanism can be referred to either side of

the gear ratio and lumped either with the source impedance or the load impedance.

However, in our case, two transformers employed and the source impedance is not

necessarily fixed. Thus, as illustrated in Figure VI.5 (c), we refer all quantities to the

equivalent motor shaft.

The general circuit for the passive load case is provided in Figure VI.7. Note that all

variables are electrical equivalents (i.e. voltages and currents). The impedances are

defined in rectangular and polar form in equations (VI.5) through (VI.7). The average

power absorbed by the load will be the average power dissipated in load damping, as

defined in (VI.8). Expressing the PL in terms of defined parameters leads to (VI.9).

Zr,, = R,,, + jX,,, = ZmZ'_ ,,, .............................................................................. (VI.5)

Z, = Rt + iX, = ZtZ2t ` ................................................................................... (VI.6)

ZL = RL + JXL = ZLZ_/L ................................................................................ (VI.7)

PL = Re {TL]* ............................................................................................... (VI.8)

PL _

_ {z.cos(-_.)+z,oos(-_,)+z__os(-__)
{z.cos(-_.)+z,oos(-_,)+zLcos(-_,)}2
+{z,,,sin(-?,,,)+Ztsin(-?t)+ZLsin(-?L)}2

_ {zocos6.)+z,_os6,)}
{z,._os6,.)+z,_os6,)+z_cos(_,_)}2
+{z,,,sin(t,,,)+Ztsin(y,)+ZLsin(yL)}2

.................................. (VI.9)
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Fig. VI.7 - Simplified Equivalent Circuit with Passive Load

At first appearance, one might assume that the load power would be maximized when

the total motor and transmission impedance were matched to the load impedance, as

dictated by the Maximum Power Transfer Theorem, which is one of the most often

misused theorems on a day to day basis. The Maximum Power Transfer Theorem states

that if the source impedance is fixed, then maximum power transfer to the load will occur

when the load impedance is equal to the conjugate of the source impedance. However, if

the load impedance is fixed, then the theorem does not apply. Such a condition will be

analyzed later.

We return to the load power expression in (VI.9) to begin our analysis. Consider the

case where the input voltage phasor, motor impedance, and load impedance are fixed, but

the magnitude and angle associated with the transmission impedance are allowed to vary.

Realistically, the transmission will have negligible spring effects, and thus, the angle is

bounded between 0 and 90 degrees. Figures VI.8 and VI.9 display the load power and

efficiency, respectively. Both are plotted versus magnitude and angle for the

transmission impedance. For the study, the values presented below were used:

Vs = IOOZO°V

Z,. = 5/80°f_

ZL = lOZ80°_

VI.10
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The transmission impedance was varied in magnitude and angle over the range specified

in the figures. Note from the figures that maximum power transfer to the load is obtained

when the transmission impedance magnitude and angle are minimum, and maximum

efficiency can be obtained when the magnitude of the transmission impedance is as low

as possible and the angle of the impedance is as close to 90 degrees as possible.

The analysis can also be performed varying the real and imaginary components of the

transmission impedance. Figure VI.10 and VI.11 show load power and efficiency as

functions of the real and imaginary components of the transmission impedance. Note that

these figures indicate that minimizing the real part of the impedance maximizes

efficiency while minimizing both the real and imaginary components maximizes power

transfer to the load. Obviously, whether the analysis is performed in rectangular or polar

coordinates does not affect the result. Both analyses lead to the conclusions that power

transfer to the load is maximized when the series motor and load impedance has

minimum magnitude and that efficiency is maximized when the real component of this

impedance is minimum.
The non-linear nature of the efficiency and load power curves provided above prove

useful for analysis. From Figure VI.8, we see that while load power continuously

decreases with impedance magnitude, it has a global minimum with respect to angle.

Hence, these conditions warrant investigation. In order to find the conditions for

minimum power transfer to the load, the load power expression in (VI.9) was

differentiated with respect to the transmission impedance angle. This derivative was

equated to zero, and the relationship presented in (VI. 10) was produced.

I eql........................................................,VI10,
"/, = tan --_+Rt+-_-_L =tall(.ReqJ

This equation indicates that the impedances of the motor and transmission, accounting for

gear ratio and screw lead, should be selected such that the total equivalent system

impedance magnitude is minimized. This, in turn, will maximize the current and hence,

maximize the load power. In the complex plane, this is illustrated in Figure VI. 12. The

figure shows that when the angle of the transmission impedance is equal to the angle of

the combined impedance of the motor and load, that the magnitude of the total impedance

is a maximum. The circle indicates the locus of the total impedance and the feasible

range is denoted.
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Fig. V1.12 - Total System Impedance

The foregoing has been based on the assumption that the gear ratio and screw lead

were fixed. Let us combine the motor impedance with the transmission impedance and

consider this to be an equivalent transmission impedance. Note from Figure VI.5 (c) that

the load impedance is a function of(N_Ph) 2. Thus, we can consider the load impedance as

variable. Differentiating equation (VI.9) with respect to ZL and equating the result to zero

yields a maximum power transfer to the load under the conditions described in (VI. 11).

(Z,.,, + 2t)=Z L .............................................................................................. (VI.11)

N s and Ph can be selected such that (VI.11) is true. This is equivalent to proper selection

of an impedance matching transformer. The only difference is that the "transformer" is

not ideal, and its effects must be considered, as was done in the previous work.

At this point, our analysis has produced three basic relationships for maximizing

power transfer to the load and maximizing efficiency. We now turn to the issue of torque

requirements. We assume that the load power has a fixed requirement, and then we vary

the transmission impedance. The same impedance data that was previously employed is

used again here. However, the load power is defined as:

PL=100 W

Thus, the current is constrained to 4.8 A. Hence, we can calculate the input voltage, or

torque equivalent, as a function of transmission impedance magnitude and angle. The

results are presented in Figures VI.13 and VI.14. Note that torque requirements are

minimized when the transmission impedance magnitude is minimized and when the angle

approaches 90 degrees. Fortunately, this result is coincident, rather than in opposition to,

our previous findings.
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VI.4.1. Passive Load Summary

Through the foregoing analyses, we have found several conditions for optimal

component selection. All analyses were based on two fundamental assumptions:

• The actuator load was passive.

• The motion profile was defined by a fixed frequency sinusoidal velocity.

The analyses that were performed each had additional assumptions imposed. The various

conclusions, assumptions, and impacts on power transfer to the load, efficiency, and

torque requirements are summarized in Table VI.3. Under the effect column, the quantity

is declared maximized, minimized, increased, or decreased. Increased implies that the

quantity is not necessarily maximized, but merely increased. Decreased implies that the

quantity is not minimized, but merely decreased.

While enforcing any one condition from Table VI.3 has a specific effect, not all will

be possible in any given design application. Furthermore, implementation of multiple

conditions may be identical. It must also be pointed out that enforcing the optimality

conditions must be guided by some design weighting on the three issues: load power,

efficiency, and torque requirements. The parameter selection process is not continuous.

Hence, optimization is highly restricted. To illustrate this point, when a specific gear

head is selected based on gear ratio, the gear damping and inertia become fixed.

However, the table does provide some useful guidelines for actuator component selection.
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Table VI.3 - Passive Load Actuator Optimization Conditions

Optimality

Condition

(1)

minimize:

(2)

( 'X m + X t

tan _-t ,R m +
--_ 90 °

(3)

minimize:

R m + R t

(4)

Effect

Assumptions P L 1"1 Tm

• Fixed gear ratio max inc min
• Fixed screw lead

• Fixed gear ratio inc max min

• Fixed screw lead

• Fixed gear ratio inc max min

• Fixed screw lead

• Fixed gear ratio min dec

• Fixed screw lead

max• Fixed motor

impedance

• Fixed transmission

impedance

max

Mechanical

Implementation

• Minimize motor

damping and
inertia

• Minimize screw

damping and
inertia

• Minimize gear

damping and
inertia

• Maximize

inertia to

damping ratios

of motor, gear,
and screw

• Minimize motor

damping

• Minimize screw

damping

• Minimize gear

damping

• Select gear and
screw

impedance such
that the net

impedance

magnitude is
minimized

• Select gear ratio
and screw lead

such that the

reflected load

impedance is
matched to the

sum of the

motor

impedance, the

reflected gear

impedance, and
the reflected

screw

impedance
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- VI.5. Active Load Analysis

In this report section, guidelines for the selection of actuator components are provided

for the case when the actuator is to drive an active load. The general circuit for this

situation is provided in Figure VI. 15. Note that the circuit is presented as an equivalent

electric circuit with voltages, currents, and impedances. The load contains a torque

source modeled as a voltage source derived from a force function acting on the nut of the

screw. This load source is selected as the phase reference at zero degrees. In this case,

the load damping is a loss, but not a useful energy conversion. Hence, the power

delivered to the load is the average power dissipated in the load forcing function.

Expressed in terms of named circuit values, the load power is presented in (VI. 12).

PL= v, [zs Zscos(¢s -o s) + Vs z, cos(,_ -o _) - v,,Zscos(Os)- v, z_ cos(0_)]
Z_ + Z_ + 2Z s Z L cos(O s - 0 z,)

........................ (VI.12)

z, ZL

+

=VL/0 °

Fig. V1.15 - Simplified Equivalent Circuit with Active Load

Note that the source impedance includes both the equivalent motor and transmission

impedance.

Component selection dictates the circuit values associated with the impedances and

the magnitude of the load voltage. Thus, they form the focus for this study. The input

source voltage and phase angle are controller dictated. For our purposes, then, we will

consider power transfer to the load with variations in: Z s ,0 s , ZL,O I., and VL . Note

that all of these variables are dependent on gear ratio and screw lead according to Figure

VI.6.

To determine the impact of load voltage, which can be varied by screw lead and gear

ratio selection, on load power transfer, the load power expression in (VI.12) was

differentiated with respect to load voltage. This derivative was equated to zero, and the

result in (VI. 13) was produced.

VI.21



Vt =-2- c°S--s-+ _sin--Seq J ................................................................ (VI.13)

To illustrate the findings, the following parameters were assigned to the circuit in Figure
VI.15:

m

Vs = 100-/30 ° V

Z s = 2.5Z65 ° f2

Zt = 10Z25 ° D.

The load voltage magnitude was varied from 10 to 100 V. Using the above parameters,

(VI.13) dictates that the load power should be maximum at a load voltage of 59.3 V.

Figure VI. 16 bears this to be true. Figure VI. 17 illustrates the efficiency of the system

versus load voltage magnitude. Note that the maximum efficiency does not occur at the

same point as maximum power transfer.

For realistic equivalent circuit values (positive impedance angles and non-negative

resistances), the load power can be shown to continuously decrease, in a non-linear

fashion, with the magnitude of the source impedance and the load impedance. Hence, the

conditions in (VI. 14) and (VI. 15) maximize the load power over the constrained region.

Note that these conditions do not provide global or local minima.

Z s --_ 0 .......................................................................................................... (VI. 14)

Z t -* 0 .......................................................................................................... (VI.15)

Employing the same values for illustration as presented above, but fixing the load voltage

magnitude at 75 V and varying the source impedance from 1 to 100 _, yields the load

power and efficiency curves presented in Figures V I. 18 and VI. 19, respectively.

When either of the series impedance magnitudes are increased, the magnitude of the

equivalent series impedance is increased. Thus, the current decreases. As a result, the

load power decreases in a non-linear fashion. Though it would appear that the decrease

would be proportional to the current decrease, the varying phase angle of the current also

contributes. Also, the losses decrease as the current squared. The net result is an increase

in efficiency with decreasing load power. This is illustrated in Figure VI.20.

Considering variations in the load and source impedance angles through analysis of

the load power expression in (VI. 12), it can be seen that maximum power transfer to the

load occurs when the two impedance angles obey the relationship set forth in (VI. 16).

0 s -0 L = -+180° ........................................................................................... (VI.16)

Clearly, this relationship illustrates the minimization of net series impedance magnitude

and thus, maximum current. Hence, maximum load power and efficiency is obtained.

VI.22
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This condition,however,is not realisticas it requiresspringsandnegativedamping. The
conditionexpressed in (VI. 17) is the best that is obtainable within the feasible range.

0 s - 0 L = -+90° ............................................................................................. (VI. 17)

This condition will also maximize efficiency over the feasible range.

Using the previously defined circuit values but varying the angle of the source

impedance from 0 to 90 degrees produces the plots presented in Figures VI.21 and VI.22

for load power and efficiency, respectively.

To consider torque requirements, we return to the equivalent circuit of Figure VI. 15.

Assume a known load force and a desired sinusoidal velocity (current) profile. These

known quantities define for both the load power and current phasor. Hence, the source

voltage magnitude (torque) may be expressed as presented in (VI. 18).

Vs = IZs + ZL ............................................................................................. (VI.18)

This expression indicates that minimizing the magnitude of the equivalent impedance,

defined in (VI. 19), will minimize the torque requirements.

ZS dr ZL = Zeq --- _/z2 + z2L + 2Zs Zt. cos(0 s -0 L ) ................................. (VI.19)

The minimum to this function is bounded by realistically obtainable values like non-

negative damping and no springs. Hence, we see that (VI.14), (VI.15), and (VI.17) apply

not only to aiding power transfer, but to reducing torque requirements as well.

Vh5.1. Active Load Summary_

Through the foregoing analyses, we have found several conditions for optimal

component selection. All analyses were based on two fundamental assumptions:

• The actuator load was active.

• The motion profile was defined by a fixed frequency sinusoidal velocity.

The analyses that were performed each had additional assumptions imposed. The various

conclusions, assumptions, and impacts on power transfer to the load, efficiency, and

torque requirements are summarized in Table VI.4. Under the effect column, the quantity

is declared maximized, minimized, increased, or decreased. Increased implies that the

quantity is not necessarily maximized, but merely increased. Decreased implies that the

quantity is not minimized, but merely decreased.
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Table VI.4

Optimality
Condition

(1)

"cos( s)+

X__eqsin(d_sl

• geq

(2)

Zs

ZL -+ O

(3)

0 s - 0 t _ +90°

Active Load Actuator Optimization Conditions
Effect

Mechanical

Assumptions Pt. 1"1 Tra Implementation

• Fixed source/ max - - • Choose gear
transmission ratio and screw

impedance lead to match
• Fixed load load voltage

impedance • Control source

• Fixed input phase angle

torque phasor

• Fixed gear ratio inc dec dec • Minimize
• Fixed screw lead damping and

• Fixed input inertia of
torque phasor motor,

• Fixed load force gearhead, and
screw

• Fixed gear ratio inc inc dec • Select motor,
• Fixed screw lead gearhead, and

• Fixed input screw
torque phasor impedance with

respect to load
• Fixed load force impedance

• Fixed source and angle
load impedance
magnitudes

Although the conditions set forth in Table VI.4 provide sound guidelines for

component specification, strict enforcement will not be possible. Varying individual

quantities will redefine others. Hence, these can only be applied in a very general sense.

As with the passive load, selection of the most important optimality conditions must be

driven by measures of importance place upon load power, efficiency, and required torque.

VI.6. Conclusion

The previous sections have presented conditions for optimal component selection in

the design of electromechanical actuators driving both passive and active loads. It is

imperative to recognize that true optimality can only be defined when, for a given

application, a designer specifies relative merit to power transfer, efficiency, and torque

requirements. This enables a more clear definition of what optimality conditions are

most critical.

Throughout this report section, variation in a single parameter was addressed with all

other parameters and variables held constant. This limits the applicability of the findings.

Variations in any single parameter will inherently produce a variation in other

parameters. For example, the inertia of the gearhead can not be changed without a

variation in the damping. As another example, selecting a new gear ratio will also result

VI.31



in a variation of the gearhead damping and inertia. All such parametric dependencies

impact the three issues that define optimality.

VI.6.1. Future Development

To address the issue of a true, though constrained, optimal solution to the problem is

the focus of future work by the authors. Only the active load case will be considered, and

controller interactions will be included. While the presented work employed analytical

expressions for load power, future efforts will include analysis of analytical expressions

for efficiency and motor torque. Parametric dependencies upon one another will be

addressed in a generalized manner such that optimal component selection can be

performed based on data associated with commercially available products.

VI.6.2. Single-Frequency Justification

A major portion of this chapter's content has been based upon the single frequency

assumption. The obvious question is whether or not such is reasonable. We turn to the

SSME TVC application for consideration of this issue. A close approximation to an

actual SSME nozzle position profile is presented in Figure VI.23. Figure VI.24 provides

a plot of the nozzle velocity computed from the position data using a first-order backward

finite-difference approximation. The software MATLAB was used to compute the

harmonic content in the waveform. The frequency content in the power spectral density

is presented in Figure VI.25. Note that an analysis could be performed about the

maximum frequency component at 0.22 Hz. The response falls off about that point, but

three distinct frequencies are dominant.
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VII. HEALTH MONITORING AND FAULT DIAGNOSIS

Throughout the performance of this grant, NASA representatives have expressed

much interest in health monitoring and fault diagnosis (HMFD) of EMA systems. In

light of this, we began investigating HMFD algorithms for such an application.

Specifically, our focus was on the HMFD problem for electric machinery. Previous work

had identified the brushless permanent magnet machine as the best candidate to be the

prime mover in an EMA system for thrust vector control. Thus, our focus was narrowed

to health monitoring and fault diagnosis specifically for the brushless permanent magnet

motor.

The majority of our theoretical and experimental efforts on this topic were addressed

in a recent Ph.D. dissertation written by one of the students funded on this grant. This

dissertation is presently the most authoritative document we have produced on the topic,

and it is presented in Appendix B.

The findings were that the adaptive Kalman filter approach to the HMFD application

is feasible. Laboratory data, gathered in the Electromechanical Actuation Test Facility, is

used for confirmation. Our future work will be aimed at developing a real-time

implementation of the proposed system on digital signal processing hardware.

The development of a prototype system for HMFD will enable new research and

development in the areas of adaptive and variable-structure control of EMA systems.

Furthermore, such HMFD systems will enable reduced maintenance and higher reliability

for EMA systems.

As Appendix B is a complete document, the topic is left at this point, and the reader is

referred to the Appendix.
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Inertia Calculations

Conversion Factors

lb. s 2 / in
Mass: 1 -

175.127kg

Component

Moment of Inertia: 1 =
lb. s2 / in in 2 lb. s2. in

175.127kg 25.42mm 2 1 I2,985 kg.mm 2

Tabk

Inertia

(kg. mm 2 )

A.1 - Raw Inertia/Mass Data

Mass

(kg)

Inertia

(lb.s 2. in )

Motor 4880 0.04319

Gear 542.3 0.004800

Screw 3182 0.02816

Mass

(lb.s 2/in)

Rollers

Nut Cage

Nut

370.8 0.003282

18.16 0.1037

2.660 0.02398

Gear Ratio From Motor to Screw

Ng r = 1/4

Gear Ratio From Motor to Nut

1 20mm rev

Ngrscrew = __'" rev 2re rad = 0.7958 mm / rad

.... OR ......

1 20mm rev in

Ngrscrew 4 rev 2n rad 25.4mm 0.03133 in / rad

Table A.2 - Reflected Inertia at the Motor and Reflected Mass at the Nut

Component Inertia

( kg. mm2 )

Nut

Mass

(kg)

Inertia

(lb. s 2- in )

Mass

(lb.s 2/in)

Motor 4880 7706 0.04319 44.00

Gear 542.3 856.3 0.004800 4.890

Screw 198.9 314.1 .001760 1.793

Rolle_ 23.18 36.60 0.0002051 0.2090

Nut Cage 11.50 18.16 0.0001018 0.1037
1.685 2.660 0.00002354 0.02398

Table A.3 - Total Reflected Inertia at the Motor and Total Reflected Mass at the Nut

Inertia Mass Inertia Mass

(kg- mm 2 ) (kg) (lb. s 2. in) (lb. s 2 / in )

5658 8834 0.05008 51.02
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CHAPTER 1

INTRODUCTION

As technology has continued to advance, so has man's ability to apply technology

in innovative ways. Some of the leading advancements in technology application have

arisen from the United State's space program. Guiding the development of research for the

space program, the National Aeronautics and Space Administration (NASA) has actively

sponsored work at The University of Alabama over the past few years. Under research

grant NAG8-240, effort has progressed to examine the replacement of hydraulic actuator

systems, used to position the space shuttle main engines, with electromechanical actuator

(EMA) systems.

The task of positioning the shuttle main engines for thrust vector control (TVC)

requires a high degree of reliability, a modest degree of accuracy in placement, and a high

level of controllability. The EMA system under consideration for the TVC application

consists of a roller or ball screw, gear box, redundant brushless permanent magnet

machines, motor drive, and motor controller. Combined, these individual components

transform electric power into linear motion. Each system component is being evaluated

for compliance to the mission requirements.

Previous work led to the recommendation of utilizing a brushless permanent

magnet machine (BPMM) as the prime mover for the EMA system in the TVC

1
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application[1]. Currenteffort is proceedingto optimizethemotordrive,controller,andto

implementa healthmonitoring(HM) system. The concept of health monitoring entails

observing specific machine measurements and deciding whether or not the motor is in a

normal operating mode. Furthermore, if the measurements indicate that the machine is not

functioning normally, the health monitoring system should detect the deviation and define

which failure mode the motor has entered. For the brushless permanent magnet machine,

four failure modes have been defined; flux weakening, bearing failure, armature open

circuiting, and armature short circuiting [ 1]. The goal of the HM system is to discover the

machine's transition out of a normal operating mode early enough and with enough

accuracy to predict an impending fault. With this information, a control decision can be

made to minimize load requirements of the motor or to even remove the motor from active

service. Since the EMA has redundant prime movers, the loss of one motor from active

service is not functionally debilitating.

Among various possible techniques for implementing a health monitoring system,

the Kalman filter approach was selected primarily due to its flexibility and efficacious

performance. Since the filter was first introduced in 1960 [2], numerous applications and

innovations for the filter have been realized. The impact and utilization of the filter has

been so great, that some have even stated that the Kalman filter represents the most widely

applied and demonstrably useful result to emerge from the state variable approach of

modem control theory [3]. The inherent beauty of the filter is that noisy measurements of

a system are blended with a system model estimate to formulate the most likely status of

operation for the system. Others have previously applied Kalman filtering techniques to

power system fault detection scenarios with impressive performance results [4]. The filter

has also been utilized for identification of specific machine parameters [5], and a similar
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filtering approachutilizing stateestimationtechniqueshasbeenimplementedfor fault

detectionapplicationswith inductionmotors[6].

By selectivelychoosingthesystemoperationalstatusfrom amongseveralfilters

operatingconcurrently,anadaptiveapproachof theKalmanf'dteris realized.Thisadaptive

approachnot only filters the noisy measurements, but also enables the system to be

modeled for various modes of operation, including the four fault modes. Thus, it is

possible to perform the function of health monitoring by observing the transitions from a

filter modeling normal operation to other filters modeling a progressive movement of the

system into a particular fault mode.

1.1 Dissertation Objective

The principle purpose of this work is to verify the applicability of an adaptive

Kalman filtering approach to the task of health monitoring a brushless permanent magnet

machine. Enroute to this end, a detailed simulation for the permanent magnet machine has

been developed. The simulation contains enough flexibility to describe various potential

fault modes for the motor, and will form the basis for the system model used in the

Kalman filter. A discrete Kalman filter has been realized for the motor, providing the

feasibility for computer implementation and simulation. Finally, an adaptive Kalman Falter

has been formulated from combinations of various discrete filters. Simulation and

laboratory experiments have been conducted with the adaptive filter strategy and

substantiate this concept as a valid health monitoring technique. A literature survey of

relevant topics has been conducted to gain insight into current techniques for accomplishing

these tasks.
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1.2 Dissertation Overview

The dissertation begins with a background and review of literature focused on

permanent magnet machines, machine failure modes, health monitoring systems, and the

Kalman filter. A theoretical discussion and presentation of the machine model, fault

modes, discrete Kalman filter, and the adaptive Kalman filter is then presented in detail.

Next, results from simulation studies and laboratory experiments are shown to verify the

validity of this concept. Finally, a summary offers recommendations for the applicability

of this approach with regard to real time processing, and also provides insight into future

topics for research work in this area.



CHAPTER 2

BACKGROUND AND SURVEY

Arguably, the invention and advancement of the digital computer has singularly had

the greatest impact on the promotion and application of technology in the twentieth century.

The computer has spawned completely new patterns of thought and analysis on scientific

and engineering problems. Furthermore, the processing capability that is available today

has revolutionized solution techniques, making feasible what was only a decade ago

impossible. One result of this process has been the utilization and refinement of state

variable modeling techniques for various physical systems.

The brushless permanent magnet machine may be described as a state variable

system, which can be expressed in discrete terms for digital simulation. Section one of this

chapter details the development of brushless permanent magnet machine technology and

outlines trends in the state variable approach for machine modeling. A discussion of

potential motor fault scenarios is presented along with a brief overview of the impact to the

machine for each fault. Next, strategies and techniques for health monitoring and fault

prediction of state variable systems is presented. Selection criteria for the EMA motor

health monitoring system is also reviewed. Finally, the Kalman filter, which relies upon

the state variable system modeling approach, is introduced. In addition, recent literature is

_ 5



presentedwhichdescribestheimplementationof anadaptiveKalmanfiltering approachas

ahealthmonitoringsystemfor anotherapplication.

2.1 Brushless Permanent Magnet Machine Technology

Two types of brushless permanent magnet machines exist, the bmshless dc motor

(BDCM) and the permanent magnet synchronous motor (PMSM). Pillay and Krishnan

[7] describe the different operating characteristics and control requirements for both

motors. While quite similar in nature, the main difference between the machines is

presented as the shape of the back electromotive force (EMF) waveform; which is

sinusoidal for the PMSM and trapezoidal for the BDCM. The different EMF waveform

shapes result from the arrangement of the stator windings and the shape of the permanent

magnets, which can be either buried or surface mounted on the rotor [7]. The development

of brushless permanent magnet machine technology has stemmed from the advancement

of magnetic material composition. These newer materials allow for strong magnetic fields

to be placed on the rotor, fields capable of producing substantial torque development. In

addition, the expanding capabilities of high power electronic devices, which facilitate

electronic commutation or switching for the stator, have revolutionized the implementation

possibilities for the brushless technology.

Demerdash and Nehl [8] have developed a detailed dynamic model of the BDCM

for use in an aerospace actuator application. Utilizing network graph theory techniques, a

fourteenth-order state variable model for the motor and its associated drive components has

been presented. A comparison of numeric simulation results and experimentally gathered

machine data demonstrate a high correlation between the developed model and the actual

system, even during transient phenomena. Rubaai and Yalamanchili [9] have presented a



computermodelingapproachfor designanalysisof thebrushlessdcmachine. Again,the

simulationeffort reliesupona statevariablerepresentationof theBDCM andallows the

machinedesignerflexibility to varyspecificmotorparametersfor optimizationpurposes.

ConsoliandRaciti [10] presentastatevariableapproachto theanalysisof thePMSM. The

numericsimulation resultsareshownin comparisonto experimentallygathereddatato

validatethestatevariablemodel.

In companionpapers,SudhoffandKrause[11, 12]presentanaverage-valuemodel

for the brushlessmachinestate variable equations by employing a few simplifying

assumptions.The assertionis made that the BDCM is in fact a PMSM suppliedwith

electricalenergyfrom aninverterthatregulatesphaseswitchingbaseduponrotor position

[11]. Perhaps the most significant assertion is that the phase currents can be switched off

instantaneously as dictated by the motor drive control strategy. This is a simplifying

assumption of motor drive performance. However, the simulation and laboratory results

indicate that only a small margin of error is introduced into the system model via this

assumption.

Pillay and Krishnan [13] provide yet another description of brushless machine

technology in state variable format. The scope of their work is to study the performance

characteristics of the different motor drive and control strategies available for operating

both the BDCM and PMSM. The simulation and experimental results indicate that the

state variable machine model provides the capability for both transient and steady state

operating phenomena to be accurately represented. The authors have extended their

presentation and simulation of this study in companion papers [14, 15]. Again, both

papers provide simulation and experimental results that substantiate the state variable

approach for machine modeling.



Oneof theprincipleadvantagescontainedin astatevariable model description for a

system is the accessibility of the system descriptive parameters for modification and

change. This characteristic may be exploited to enable an accurate modeling of failure

modes. Several modes of failure for brushless machine technology have previously been

presented and discussed [1]. Therefore, the failure mode analysis fi_r this research effort

has been confined to four possible fault modes; beating failure, flux weakening, armature

phase open circuiting, and oarnature phase short ch'cuiting.

Bearing failure can occur for numerous reasons, and is a complex disturbance to

accurately model. Typically, system descriptive parameters like the viscous damping

coefficient, system inertia, and load torque may be manipulated to model this failure [16].

If a brushless machine experiences excessively high temperatures for a substantial amount

of time, the magnetic material of the rotor will begin to experience a degradation in flux

capability. As a result, torque production will be decreased and the motor will begin to

draw higher currents to maintain the load demand. Since the coefficient for the generated

electromotive force is directly related to the flux capacity of the rotor, changing this

descriptive system parameter is a reasonable strategy for modeling the flux weakening

failure. Both the armature open circuit and short circuit failure modes involve changing the

electrical phase parameters which m'e descriptive of the winding conductance. Again, a

successful scheme for simulating the machine during these failure modes is to manipulate

the system descriptive parameters (phase resistance, self, and mutual inductance), which

are readily available within the state variable format.

2.2 Health Monitoring Techniques

Various schemes for machine fault detection are available today. The principle

objective for the EMA machine health monitoring system is to detect and predict (in
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real-time) an impendingmachine failure mode. Somedetectiontechniquesrequire

expensivetestingor diagnosticequipmentandmustbeperformedwhile themotoris outof

service,or off line. Most often,theseanalysisproceduresrequireadisturbancein system

integrity, either through removing a machinecomponentor by introducing a foreign

substanceinto the machinesystem. Examplesof thesetestsareparticleanalysisof the

motoroil, designedto detectbearingwear,andradiofrequencymonitoring,which injects

radiofrequencysignalsinto thestatorto detectwinding insulationwearbasedonchanges

in the measuredsignal patterns[16]. Other techniques,termednon-invasive, do not

requirethemachineto beoff line or otherwiseoutof serviceanddo not compromisethe

systemintegrity. A few of thenon-invasiveapproachesto machinehealthmonitoringare

the artificial neuralnetworkapproach,spectralanalysisof motorsignals,andparameter

estimationtechniques[16].

The body of literatureavailabletoday doesnot addressthe applicationof non-

invasivehealthmonitoring techniquesto the brushlessmachinetechnology. However,

significantinformationisavailablefor understandingtheimplementationof thesestrategies

for inductionmachines.Therefore,asurveyof theliteratureavailablefor thenon-invasive

techniquesappliedto induction motorshasbeenconductedwith theconjecturethat the

analysistechniquecouldreadilybeusedwith thebrushlessmachinetechnologyandwould

obtainsimilarperformanceresultsor capabilities.

Chow,Sharpe,andHung[16] presentanartificial neuralnetwork(ANN) approach

for fault detectionof an induction machine. A studyof two common machinefaults,

bearingwear and insulation failure resulting in a shortcircuit on the stator, hasbeen

conducted.Theprincipleassertionfor utilizing anANN is thatthenatureof afault mode

for themotor is ahighly nonlinearevent. ANN techniques have been demonstrated to be
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usefulin situationsdealingwith nonlinearsystems,andaredemonstratedto beacceptable

for faultdetection.

Chow, Mangum,andYee [17] havesuccessfullyshownthatthe artificial neural

networkapproachfor fault detectioncanbeaccomplishedin real-time.Again,thetwo fault

modesinvestigatedwerethebearingfailure andstatorshortcircuiting. A presentationis

made for the learning scheme of the ANN and its performance in laboratory

experimentationonfault detection.

Goode and Chow [18] extendthe ANN conceptby incorporating fuzzy logic

techniqueswithin theframeworkof anartificial neuralnetwork. Thiscombinationallows

for an assessmentof the generalheuristicor qualitative information of the fault to be

obtained. Once again, the bearingfailure andstator shortcircuiting arestudied,with

successfulresults.

A secondtechniquefor faultdetectionin machinesis thespectralanalysisof current

signalsof themotor. Thomson[19] hasutilized thisschemesuccessfullyfor detectingthe

bearingwear and brokenrotor barsfor large three-phaseinduction motors. The basic

premisefor spectralanalysisis that when a machineis experiencingfault conditions,

characteristicspectralsignaturescontainedin thecurrentsignalsareobservable.

Penman,Sedding,Lloyd, andFink haverecently suggestedthe useof spectral

analysisof theaxial leakageflux for detectingstatorshortcircuit failure. In thisapproach,

anaxialleakageflux sensorisrequiredto providethedatafor spectraldecomposition.One

significant contributionto thefault analysisis thecapabilityto predictthe locationof the

shortcircuit. Resultsfor laboratoryexperimentsarepresentedto verify this technique.

However,it shouldbenotedthatthis schemedetectsonly onefailuremode.

Farag,Bartheld,andHabetler[21] havecombinedthespectralanalysisapproach

with a thermal model implementedon a microprocessorto provide on-line motor
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protection.While thispaperonly proposesthetechniquein concept,significantdetailand

referencematerial hasbeenprovided to supportthe idea. An additional monitoring

requirementfor thisschemeis thethermalsensorfor themachine.

The utilization of system modeling techniques for fault detection via parameter

estimation has also been explored. Cho, Lang, and Umans [6] employ a least-square-error

estimator to predict various machine parameters. The analysis approach was shown to be

sufficient for detecting broken rotor bars in an induction machine through stator phase

resistance estimation. However, the authors describe a few limitations for this concept

which may impact the widespread practical implementation of this technique.

Trutt, Cruz, Kohler, and Sottile [22] use a modeling approach toward machine fault

detection to create a database of machine parameter deterioration trends. Again, the focus

for this paper is on the induction motor, but the concept seems applicable to the brushless

technology. Comparison of experimental observations with results from detailed modeling

are presented to verify the capability of fault detection through trend analysis of motor

parameters.

Of these three available non invasive monitoring techniques, only the parameter

estimation approach enables a detailed quantification of the system behavior. While the

other two schemes facilitate fault detection and prediction, they do not provide as much

descriptive information of the system as desired for the EMA HM system. Furthermore,

the ease of modeling the brushless permanent magnet machine as a state variable system

readily facilitates the parameter estimation technique. Thus, the parameter estimation

scheme was selected for implementation as the machine health monitoring system for this

research application.
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2.3 The Kalman Filter

Kalman's original work [2] spawned a plethora of research and development

activity. Concurrently, the state variable approach for system modeling and analysis was

being refined, with new applications for these techniques continually appearing in the

literature. The impact of the digital computer upon the realm of engineering problem

solution and formulation brought another wave of progress and advancement in this area.

The early work and development of state variable analysis and the Kalman filter has

been historically chronicled by Kailath [23], which lists 390 references of which

approximately 140 concern the Kalman filter. As the realization of the technical capability

available within this analysis framework grew, numerous variations of the Kalman filter

appeared. Magill [24] was the first to introduce the concept of a parallel Kalman filter

structure, which has since become known as the adaptive Kalman filter (AKF). This

architecture allows for nonlinear system behavior to be processed, and creates the

opportunity for system hypothesis testing. Brown [25] expands Magill's work to facilitate

the testing of system hypothesis, which is the foundation of the health monitoring system.

Another popular implementation scheme of Kalman filtering for nonlinear systems

is the extended Kalman filter (EKF). Based on the strategy of linearization of the state

estimate along a nominal system trajectory, the EKF has recently been utilized for

estimating PMSM parameters [26]. While the authors present an intriguing scenario,

several limitations exist for choosing the EKF as a health monitor. The principle objection,

which will be elaborated in chapter 3, resides in the necessity of a small tolerance on the

actual state deviation from the expected trajectory. Additionally, this application of the

EKF is focused on processing data for the PMSM while operating in a normal mode
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without thecapabilityof handlingfailure modes.Nonetheless,theEKF hasexperienced

widespreadusein machineparameterestimationandcontrol[27-29].

Within the framework of a health monitoring system, the AKF has been

successfully implemented for various systems. Girgis has numerous articles (e.g., [4])

relating the application of Kalman filtering and adaptive Kalman filtering to power system

condition monitoring. Chowdhury, Christenson, and Aravena [30] extend Girgis's work

by developing a power system fault detector using hypothesis testing capabilities with

successful results.

Companion papers by Maybeck, Hanlon, and Menke [31, 32] contain an

implementation strategy of the AKF that most closely reflects the scheme which is used in

this research work. Although the aircraft system discussed in the articles is not directly

comparable to the brushless permanent magnet machine system, the technique of

application and filter formulation contains valuable information. Furthermore, since the

authors employ a state variable modeling approach for their system, the expectation of

achieving similar performance results is reasonable.

Several research objectives were defined as a result of this background survey of

technical literature related to the brushless permanent magnet machine, health monitoring

systems, and the Kalman filter. Without question, developing an accurate state variable

model for the brushless permanent magnet machine should be a realistic task.

Furthermore, a descriptive implementation of the various failure modes for the machine

within the state variable model should also be a realizable goal. Finally, given the

successful implementation of the adaptive Kalman filter as an HM system for other

applications, developing an AKF scheme for the BPMM HM system seems to be a

worthwhile pursuit.



CHAPTER 3

MODEL DEVELOPMENT

This chapter presents the theoretical development of the various models employed

throughout this research effort. The most fundamental modeling procedure describes the

operation of the brushless permanent magnet machine, from both elecu'ical and mechanical

vantage points. Based upon the final state-space description of the machine, four distinct

failure modes have been modeled. The discrete Kalman filter equations are shown utilizing

the machine state-space model as the stochastic system or plant model. Additionally, a

computer routine used extensively throughout the system simulation work for generating

gaussian white noise is presented. Finally, the adaptive Kalman filtering approach for

health monitoring of the machine is developed.

3.1 The Brushless Permanent Magnet Machine Model

Much modeling and simulation work has been focused on the emerging area of

brushless permanent magnet machine technology [5, 7-15]. One commonly used electrical

diagram for these machines is shown in Figure 3.1. Notice that the diagram contains both

the machine and its associated power electronic drive. The transistors simply function as

switches, and are themselves regulated by additional elecu'onic equipment (not shown).

14
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Figure 3.1 BPMM and power electronic motor drive electrical schematic

Region

I

II

HI

IV

V

VI

Transistor Status

1 2 3 4 5 6

• • on * on *

on * * * on *

on • • • • on

• on • • • on

• on * ON * *

• • on on • ,

* denotes transistor off status

Angular Rotor

Position

330 < 0e < 30

30 < 0e < 90

90 < 0e < 150

150 < 0e < 210

210 < 0e < 270

270 < 0e <--330

Table 3.1 Power electronic transistor status for motor operation
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Typically, baseduponknowledgeof theangularrotor positionobtainedfrom Hall effect

sensorsor resolvers,the drive transistorsareswitchedon or off to createthe necessary

rotating stator magneticfield for torqueproduction and rotor motion. The switching

sequencefor the motor drive powerelectronictransistorsis shownin Table 3.1, which

definessix distinctswitchoperatingregionsfor themachine.

Sincethefocalpoint of thisresearcheffort doesnot includemonitoringthehealth

of the motor drive, a simplified model for the switching action of the drive hasbeen

developed.Baseduponmodelingtechniquesfor a threephaseinverter [33], Figure3.2

presentsthemachinewith thesimplified motordrive model. Noticethatthesix transistors

havebeenfunctionally replacedwith threeswitch resistors,eachassumingone of two

states.Whenatransistoris 'on' theswitchresistanceis low, andwhenatransistoris 'off'

theswitchresistanceis high. Theoperationof thesimplifiedmotordriveiscorrelatedwith

theactualdrive assummarizedin Table3.2. Figure3.3showsthevoltagewaveformsfor

v_ and v2 versus rotor electrical angle position [33]. Thus, the switch resistors and the two

voltage sources shown in Figure 3.2 are completely determined by angular rotor position.

Operation of the actual motor drive requires transistor switch commands based

upo n signals which describe the rotor electrical angle position. The laboratory BPMM was

not equipped with Hall effect sensors, so data from a resolver chip was used to create

pseudo Hall signals. Since these signals are binary and have a high signal to noise ratio,

they are, practically speaking, immune to data corruption due to noise. Therefore, accurate

knowledge of the rotor electrical angle position is readily available information that will be

utilized throughout the remaining research effort as a control input for the machine model.

Regardless of the status of the switch resistors, Figure 3.2 can be analyzed

electrically by using Kirchhoff's voltage law with an appropriate analysis technique.
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Figure3.2

rsb rb ib

rsc re lc

BPMM and simplified motor drive electrical schematic

Region

I

II

III

IV

V

VI

Transistor Status
i

1 2 3 4 5

* * on * on

on * * * On

on • • • •

* on * * *

, on * on *

* * on on *

on

on

*

*

* denotes transistor off status

Simplified Model

6 r,_ r sb r _c

* high low low

* low low high

low high low

high low low

low low high

low high low

Angular Rotor

Position

330 < 0e < 30

30 < 0e < 90

90<0e < 150

150<0e <2i0

210 < 0e < 270

270<0e <330

Table 3.2 Power electronic transistor status and simplified motor drive model
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V1 (volts)

Vbus

Vbu s/2

-Vbus/2

-Vbus

I
30

I I I
90 150 210 270

I
330
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Figure 3.3 Voltage waveforms of the simplified motor drive model
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Utilizing theinductordotnotationto definethemutualinductancebetweenphasewindings

(mab,mac,mba,mbc.mca.andmcb),meshanalysisyieldsthefollowing,

_vl + r,j, + rai, + l dit + m_J.diu di, _ ( diu'_
d t \ d t "_t J + m"c [ - -_t ) + ea -- e O +

dit di.) (dit) (diuhIb dt -_t J+m_°_---_tJ+n'bc_-'_'t J "rrb(i'-i')+r'_(i'-i')=O

(3.1a),

. ih+l(diu dit) (di,_ (" din)
-v, + rsb(i,, -i,)+ r_(i # - ,, o_ _ -_t j+ mo,_--_t j+ mb_.[---_t )+

(di, di,,) ( di,)+
eb-ec c_.-'_t j+m¢b_-_t dt )+mc"_-"_t) rc(iu)+r'_(i#)=O

(3.1b).

Assuming thattheindividualphase parameters(rcsistancc,sclf,and mutual inductance)arc

equivalent,which would be the normal case for a 'healthy'machine, equations(3.1a)and

(3.1b)may be simplificdas,

(2/- 2m)-_t_ + (m-/)--_-=di't _(2r+r,_+r,o)it+(r+r,b)ili+v_e,,+eb

(3.2a),

where,

(m - l)-_tl + (21 .. , diu- zm)--_-=(r + r,b)i , -(2r + r,_ + q¢)i,, + v2 -e_ + ec

r=ro=rb =r _

m = m_ = m,_ = mba = mo_ = me° = m_b

(3.2b),

(3.2c),

(3.2d),

(3.2e).
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From referring to Figure 3.2, it is apparentthat the individual phasecurrentsfor the

machinearerelatedto themeshcurrentsas,

i. = iI (3.3a),

i, = iu - it (3.3b),

/_ = -i. (3.3c).

Combining the equations of (3.2) and (3.3) results in the desired electrical network

representation for the machine,

(2/- 2m)

(m-l)

Fdi 7
(,-m)-I/-ar,/

[_ 0 -1 11 0-1

. .

vi

O"
ea

1

eb

.ec .

+

(3.4).

The back electromotive force terms are specified by a deterministic machine parameter, the

mechanical speed of the rotor, and the electrical angular position of the rotor as,

eo = Kbco,..<h(sin(O<) )

el,=K_,eO.,_h(sin(O.-120°))

e< = KeaL.<h(sin(O ` + 120*))

(3.5a),

(3.5b),

(3.5c).



- 21

The operation of the machine may also be presented in a mechanical sense by

describing the relationship of the physical torque production of the machine as the sum of

the load torque, inertia acceleration, and viscous damping, commonly done as [14],

z'ae_ = "Cto_a+ J dc'o"'_h _-B 09,,,,oh
dt

The developed torque for the motor is related to the converted electric power by,

(3.6).

ra,_ = e_i_ + ejb + eci_ (3.7).
09mech

Thus, combining equation (3.6) with (3.7) and rearranging terms yields,

dco,,,e_h llej_+ejb+Gic-_t -- O) ,nech

(3.8).

The actual motor used in the laboratory experiments for this research effort was coupled by

a gear box to a roller screw as depicted in Figure 3.4. Therefore, along with describing the

motion of the rotor, the mechanical operating parameters in (3.8) additionally include the

dynamics of the screw, nut, and gear box. The inertia coefficient in (3.8) may be

analytically determined as [1],

J J,,,o,o,.+(".,.r)'J.,o,...,+.,,,.,,..-',- )"= mlklear

(3.9).

Equation (3.9) uses the gear reduction (ngear), the screw lead (Ph), and the total mass

associated with linear motion (mlinear) to express the system inertia within the machine

frame of reference. The inertia coefficient may also be determined experimentally, as
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BrushlessPermanent

MagnetMachine

,IL
Electric Power Leads

Gear Box
Nut

1..._._ Roller Screw

ILLI11111LILtL!!i!1111111LILLItllltLJ
Linear Motion Rotary Motion

Figure 3.4 Electromechanical actuator system block diagram
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presentedin thenextchapter.Additionally, from experimentaldatapresentedin Chapter

Four, the viscous damping coefficient in equation (3.8) was found to be accurately

modeledasaconstantproportionalto themechanicalspeed.Thus,anacceleratingtorque

maybedefinedas,

e,,i , + ed'_,+ e,i_
_,,_ - - _:1o._- c_ .....

01mech

(3.10).

Since the motor was a six-pole machine, three electrical revolutions occurred for each

mechanical revolution of the rotor, thus,

coe = 3co,,ech (3.11).

A complete set of equations describing the operation of the machine is obtained

through merging equations (3.4), (3.5), (3.8), (3.10), (3.11), and Kirchhoff's current law,

i 0o/[!1o1= 1 0 -1 1

dtlo_,l o o 0t/_o,/+ 0 o 0 o
Loej 0 10JLoeJ o o o o o

}'1

, e a

eb

ec

. ¢_017C •

ia +ib +i c =0

(3.12).

The [L] and [R] matrices in (3.12) correspond to the inductance and resistance matrices

described in (3.4). Restated in a traditional state-space format, this model is expressed as,

._+= [A]._+[B]_

(3.13).



-- 24

Along with thedefinedoperationof thesimplified motordrivecontainedin Table 3.2,the

setof equationsin (3.13) form the machinemodelthatis usedthroughoutthe remaining

work.

Sincethemachinesimulationwork will beaccomplishedwith adigital computer,

thesetof differential equationsin (3.13)aretransformedintodifferenceequationsusinga

ftrst orderbackwarddifferenceapproximationtechniqueas[34],

x_._ - xk = [A]xk÷_ +[B]uk (3.14a),
At

which can be expressed as,

where,

and,

Xk.l = ([I]- At[A])-1 xk + ([I1- At[A]) -l At[ B]uk

x.1=[ k]xk+

[_,] = ([I]- At[A]) -_

(3.14b),

(3.14c),

(3.14d),

[0k] = [0klAt (3.14e).

Equation (3.14c) expresses the state vector (x) for the (k+l) time step as a combination of

the previous state (xk) and control (u k) vectors. The relationship shown in (3.14c) forms a

recursive state-space model suitable for computer implementation, requiring only an initial

knowledge of the state and control vectors to commence simulation.

Notice that the control input vector containing the back EMF terms is based on the

kth time step, thus these inputs may be calculated using (3.5) with the known status of the

state variables. Furthermore, the voltages within the control input vector are determined
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accordingto Table 3.2 basedon theknown rotor electricalangularposition. This same

information additionally regulatesthe resistancevaluefor eachof theswitch resistors.

Thus,correspondingto the definedoperatingregionsfor themachine,six setsof [¢k] and

[Ok]matricesin (3.14)arenecessaryfor thesimulationmodel. Oneof thetremendous

results in this procedureis that non-linear operating performanceof the brushless

pmxnanentmagnetmachinehasbeentransformedinto a modelcomposedof six discrete

linearstatevariablesetsof equations.

3.2 Machine Failure Mode Models

Four distinct failure modes of the brushless permanent magnet machine are bearing

failure, magnetic flux weakening, stator winding open circuiting, and stator winding short

circuiting. The inherent beauty of the simulation model just developed is that all of the

machine's mechanical and elecuical operating parameters are available for manipulation and

change. Thus, any possible machine fault that can be expressed in terms of these operating

parameters is capable of being simulated.

Of the four fault types, bearing failure is clearly the most difficult to accurately

model. Complete sections of textbooks are devoted to the study of bearing failure [35-37].

Perhaps quantifying the essence of this fault is so difficult because of the numerous ways

that a bearing may fail. A few examples for bearing failure are the loss of bearing

lubrication, particulate accumulation within the bearing, unusual bearing wear due to

mechanical misalignment, and beanng performance degradation due to thermal constraints.

Since the performance of the Kalman filter is heavily dependent upon the accuracy of the

system model, the bearing fault mode has been excluded from this resem'ch effort. Future



26

studycould endeavorto developa reasonablesystemmodelfor this fault which couldbe

utilizedby theKalmanfilter.

Although the compositionof magneticmaterialshasgreatly advancedin recent

years,the permanentmagnetshousedon therotor of themachinearestill susceptibleto

performancedegradationdueto magneticflux weakening. Commonly resulting from

operationin excessivetemperatures,magneticflux weakeningdecreasesthe capabilityof

themachineto producetorqueandreducesthegeneratedbackelectromotiveforce. Hence,

this fault maybe implementedby alteringthemachine'sbackEMF constantusedin (3.5)

duringsimulation.

While theprevioustwo fault modesweredescribedby manipulatingmechanical

operatingparameters,theremainingtwo fault simulationsareaccomplishedby changing

electrical operatingparametersfor the machine. When the windings of a statorphase

experiencedeteriorationleadingto aneventualphaseopencircuiting, theassociatedphase

resistanceincreasesto infinity. Thus, phasewinding opencircuiting is modeled by

transformingtheappropriateelectricalresistanceparameterin (3.12)from a normalvalue

to an infinite value. Figure 3.5 expandsthe BPMM electric diagramof Figure 3.2 to

include a fault resistor, in this caseon the 'A' phaseof the motor. The fault resistor

performsthe necessaryparametertransformation,andthe modelequationsof (3.12)are

adjustedto includethis term. Setinitially to zero,theohmicvalueof thefault resistoris

increasedduring thecourseof simulationto asufficientlyhigh resistanceto beelectrically

consideredinfinite.

A stator winding shortcircuit failure may occuramongtwo phasewindings or

betweena singlephasewindingandelectricalgroundvia themachinechassis.Figure3.6

outlinesthefault conditionfor two phasewindingsshortcircuiting together,in this case

betweenthe 'A' and'B' phases.Noticethatsincethis fault mayoccurat anypoint alongthe
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Figure 3.5 Electrical schematic for the open circuit failure mode
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Figure 3.6 Electrical schematic for the interphase short circuit failure mode
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windings, both affected phaseshavepre and post fault resistorsand inductors in the

diagram.Thepreandpostfault resistancevaluesarelinearly relatedby thepercentageof

winding turns at which the fault occurs,and sum to the original phaseresistance.

However,inductanceis governedby thenumberof coil turnspresentin thewinding [38].

Thusthe self and mutual inductancevaluesareassessedby calculatingproductsof the

percentageof windingturns. Thus,theequationsin (3.4)arereevaluatedbaseduponall of

theparameterchangesin theelecuiccircuitdiagramas,

j

and using (3.2c-3.2e),

0 0 0

0 1 -I

-1 0 1

-v,]

0 e°/
-1 ebl

i

/e_J

(3.15a),

[2s(,lm-(;"+,=)t
°'

s - 2st + t 2)m

2(1 - s)(1 - t)m - (1 - s) 2 l- (1 - t) 2l

(1 - t) _ l + (s - 1)(1 - t)m

el-(s-s,+C),. ]
(1- t)21 + (s - 1)(1- t)m[

(2t"-2t+2)(m-l) J

(3.15b),

(r,,,+r,b+(s+t)r+rt._t,)
[R]= -r,,,,,

-(r,b+_r)

--r fault

(rx_a,+(2-s-t)r)

-(1-t)r

-(r,b+.') ]
-(1-t)r /

(r,o +r,c + (2- t)r)J

(3.15c).

The values for s and t range between zero and one to represent the point at which the fault

Occurs.

Figure 3.7 depicts the scenario for a single phase winding short circuiting to

electrical ground, in this case for phase 'A'. Once more, notice that since the fault condition
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Figure 3.7 Electrical schematic for the intraphase short circuit failure mode
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mayoccurat anypoint alongthewindings,thediagramincludesbothpreandpostfault

electricparameters.Thefaultedvaluesfor resistanceandinductanceareagaincalculated

basedupon knowledge of where the short occurred,and the equationsin (3.4) are

recalculatedto reflect theparameterchangesas,

. .

V t

 iiilFell-101-1o[L] =[R] in + 0 -1 0 1 -1 ea

[.iltl.] L O 0 -1 0 0 eb

. e¢ .

(3.16a),

again using (3.2c-3.2e),

2(s -s + 1)(m -l) l- m
[L] = l - m 2m - 21

(1-s)_(l-m) 0

(3.16b),

[(r,= + r,b + 2r)

[R]:[ -r_-r

t. (s- 1)r

--r,b -- r (s - 1)r

(r,o + r,c + 2r) 0

0 r:_,,, + (1 - s)r

(3.16c).

Once again, the value for s ranges between zero and one to represent the point at which the

fault occurs.
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3.3 The Discrete Kaiman Filter Equations

Since the original presentation of his work in 1960 [2], R. E. Kalman's statistical

processing technique for linear systems has been purported to be the most widely

implemented and demonstrably utilized result from the state variable approach to modem

control theory [3]. The technique, named in his honor as Kalman filtering, has been shown

to yield statistically the optimal state estimate for a linear system [3]. Basically, three state

variable estimation implementations for the filter exist; they are a system state variable

predictor, a system state variable filter, and a system state variable smoother. The primary

difference among the three estimation formats is contained in the time indexing for the state

variable estimate. In other words, the predictor attempts to quantify the state values for

future time, the filter formulation estimates state values occurring in present time, and the

smoother implementation processes the state variable estimation for previous time.

Regardless of which application is employed, Figure 3.8 presents a fundamental diagram

conceptually depicting the processing operation of the filter loop.

To accomplish the goal of health monitoring for the brushless permanent magnet

machine, the system state predictor format of the Kalman filter will be utilized. Since a

digital computer will be utilized to implement the filter, the discrete Kalman filter will be

presented within the context of the predictor structure for state variable estimation. The

task of the filter will be to process, in discrete time steps, current noisy measurement data

from the motor state variables to produce an optimal estimate for the future state of the

machine. Ultimately, as will be presented in the next section, several filters will be

operating concurrently to enable prediction of system failure.
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INPUT: Noisy Measurement

Update

Estimate

Compute
Gain

Project
StateAhead

OUTPUT: StateEstimate

Update
Covariance

Figure3.8 Blockdiagramof thediscreteKalmanfilter loop
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The formulationof thepredictorfilter beginswith describingthesystemin state

variableformat, a taskalreadyaccomplishedin section3.1. The statevm'iablemodelof

equation (3.14) may be expandedto include a systemnoise vector (wk), a system

measurementvector(zk), anobservationmatrix ([Hk]), andameasurementnoisevector

(vk) as,

xk+l = [q_k]Xk+[0k][B]uk +Wk (3.17a),

Zk = [Hk]xk + vk (3.17b).

The measurement noise vector in (3.17b) accounts for data corruption occurring on the

signals which measure state variables, while the system noise vector in (3.17a) describes

the stochastic nature of the plant or system model. If the plant model is entirely

deterministic, then the system noise vector may be considered as a quantification of the

descriptive accuracy of the system model. Thus, for the BPMM application, the covmiance

structure of the system noise vector is functionally a measure of the confidence level for the

plant model in equation (3.14).

The measurement vector in (3.17) is defined for the machine model as,

_k ----Iia],,
OJ rnech

(3.18).

The observation matrix in (3.17) which describes the ideal connection between the

measurement and state vectors is,

oil[jrHk'-- 0 1 0
-1 0

0 0.3142

(3.19).
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Notice thatthe (4,3)entryof [Hk] in (3.19)containsaconversionfactorthat changesthe

measuredspeedvaluefrom mechanicalrevolutionsperminute to elecuical radiansper

second.Furthermore,thenoisevectorsin (3.17)areassumedto bewhite sequenceswith

thusthediagonalnoisecovariancematrices([Qi] and [Ri]) may bezero cross correlation,

described as [3],

(3.20a),
[ 0,j ¢ i

(3.20b),

G jv,q=0

Initiating the Kalman filter loop requires knowledge of the noise covatiance in

(3.20), knowledge of an a priori estimate for the state vector (_xT), and an understanding of

the error covariance structure [Pk] for the initial estimate. Once this information is

obtained, the filter loop processes the system data according to Figure 3.9 along with the

following equations [3],

[e,]=([;1-It, ])[P:]

(3.21),

(3.22),

(3.23),

(3.24),

(3.25).
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INPUT: _k
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Eqns (3.24) (3.25)
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Equation (3.23)

Figure 3.9 Expanded block diagram of the discrete Kalman filter loop
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The [Kk_]matrix representstheKalmangainandcontainstheoptimalblendingcoefficients

for addingthenoisy measurementdatato thecurrentstatevectorestimate.The [q_k]and

[Ok] matrices in (3.24) and (3.25) are the samematricesalreadydevelopedin (3.14).

Notice thattheerrorcovarianceroan'ixfor thestatevectorestimate,[Pk] in equation(3.25),

is not affectedby the deterministiccontrol input sinceit hasno associatedstatistical

uncertaintyby definition. Theequationsetof (3.21- 3.25)operatingrecursivelyasshown

in Figure 3.9 forms the discrete Kalman filter.

Finally, implementation of the Kalman filter requires the presence of the noise

sequences wk and v k. Thus, the capability for producing uncorrelated white noise

sequences with gaussian dista'ibution is necessary for the simulation studies of the Kalman

filter. The basis for generating these random sequences stems from the work by

Wichmann and Hill [39], which contains a random number generator conducive for

computer implementation. The uniform distribution of this routine is transformed into a

gaussian distribution via the central limit theorem [40]. Therefore, the variance of both

noise sequences may be completely regulated within the simulation. These variances form

the structure of the [Oad and [Rk] matrices found in equation (3.20).

3.4 The Adaptive Kalman Filter Equations

As previously mentioned, the principle goal for the health monitoring system of the

brushless permanent magnet machine is to have the capability of predicting an impending

motor failure. The failure modes of the motor have been described in section 3.3 as a

deviation in either mechanical or electrical system parameters. Within the context of the

Kalman filter, changes in the descriptive parameters may be thought of as a system



37

nonlinearbehaviorpattern. Thus,thehealthmonitoringsystemis basedupona discrete

Kalmanfilter variationcapableof adequatelyaddressingnonlinearsystemcharacteristics.

Threeprimaryvariationsof theKalmanfilter havebeendevelopedfor nonlinear

systemapplications; the linearizedKalman filter, the extendedKalman filter, and the

adaptiveKalmanfilter. The linearizedfilter con'elatesthefilter's performancealongan

unchangingnominalstatespacetrajectory[3]. Thestructureof theextendedKalmanfilter

is baseduponatechniqueof lineafizationaboutacontinuallyupdatedstatespacetrajectory

[3]. The adaptiveKalmanfilter processesnonlinearbehaviorthrough a set of Kalman

filters with varying state modelsand selectivelycombinesthe estimatedstate space

trajectories[3].

Essentially,thelinearizedandextendedKalmanfiltersutilize thesamestrategyfor

adjustingthefilter performancealongaknownorcalculatedstatetrajectoryto successfully

addressthesystemnonlinearbehavior. Forsystemshavingactualstatetrajectorieswith

small deviation from theexpectedstatetrajectory,both techniqueshavefound practical

implementationwith acceptableresults[41]. However,theanticipatedstatetrajectoriesfor

theBPMM systemwereexpectedto havesignificantperturbationsoff of nominalbehavior

(dueto systemfailures),which wassuspectedto beproblematicfor the linearizedKalman

filter technology. A simpleapproachwastakento verify this assertionby constructing

both alinearizedand anextendeddiscreteKalmanfilter for thecircuit shownin Figure

3.10.

After theswitch in Figure3.10is closed,currentflows in the networkasdepicted

in Figure 3.11. To simulatea fault condition, theresistancevalue in Figure 3.10was

increasedat aparticulartime. Two differentfault scenarioswereconstructed;onethatwas

describedby a small parameterchangeand anotherwhich was describedby a large

parameterdeviation.Figures3.12and3.13depictthecurrentflow in thecfi'cuitfor asmall
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Figure3.10 SimpleRL circuit diagramfor evaluatinglinearizedKalmanfilter schemes
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Figure 3.13 Simulated current with a large parameter change
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increasein resistance(0.1f2) andalargeincreasein resistance(100.0f'2)after0.4seconds.

Thelinearizedandextendedfilters performedwell whenthecircuit hadnosystem

parameterchanges.Furthermore,bothfilters provedadequatewhenthecircuit parameter

deviationwassmall, asshownin Figure3.14andFigure3.15which only plot thefilter's

estimatefor clarity. However,the filters haddiminishedperformancewhen thecircuit

experienceda largeparameterchange.Notice thatthe linearizedfilter's estimatefor the

current, shown in Figure 3.16, has a significant steady state error after an increase in

resistance. The extended filter's estimate for the current, shown in Figure 3.17, has a

significant oscillation which eventually decays. From these results, it was determined to

exclude the linearized and extended Kalman filter strategies from consideration as a health

monitoring system. Thus, the adaptive Kalman filter was selected as the preferred

approach for the HM application.

Various strategies for implementing an adaptive Kalman filter are possible.

However, the conceptual foundation for constructing the filter is the same. Figure 3.18

depicts the general structure for the adaptive technique, which relies upon a parallel

architecture of either discrete or continuous Kalman filters with varying system models.

The diverse system models facilitate adjusting the descriptive system parameters to

characterize the nonlinear behavior patterns. After each filter individually processes the

system measurement, the updated state information from all filters is blended in a defined

manner. The resulting estimate is propagated forward along with each filter's updated error

covariance matrix. Thus, as the system progresses forward in time, the mathematics for

each of the parallel Kalman filters must be calculated.

Developing an implementation strategy for the health monitoring application

required addressing several issues. Since each machine failure mode may easily be

described with a unique (or characteristic) set of state variable equations, the adaptive filter
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Figure 3.17 Extended Kalman filter estimate with a large parameter change



43

INPUT: zk

Kalman Filter _

#1

Kalman Filter

#2

0

o

o

0

Kalman Filter

#N

Blending

Proceedure

Figure 3.18 Block diagram of the adaptive Kalman filter loop



44

loop of Figure 3.18maybe individually appliedto thespecific machinefailure modes.

Conceptually, four sets of these loops operating concurrently (a three dimensional

extensionof Figure 3.18)would be requh-edfor the HM system. Figure 3.19showsa

genericblock diagramfor this threedimensionalversionof Figure3.18. Sincepartof the

HM systemobjectiveis to havereal-timedataprocessingcapability,a minimum number

of parallel filters wasdesired. Thus, a primary taskwas to decideon how many filters

shouldbe utilized within eachadaptiveloop andhow eachloop shouldaccomplishthe

blendingprocedure.

To determine the minimum number of filters for the parallel structure, a

quantificationof computationalburdenwasnecessary.A typical methodfor assessingthe

computationalburdenof theKalmanfilter is to tally thenumberof requiredfloating point

operations (FLOPs) to processthe filter loop [42]. Without taking advantageof

computational reduction or optimization strategies,a maximum FLOP count for the

discretefilter, asconstructedin section3.3, wasdeterminedto be 1340FLOPsper loop.

Theminimumacceptabletimestepfor processingthediscreteKalmanfilter wasevaluated

to be0.1millisecond,seesection4.1for detailsof thiscalculation.Therefore,for theHM

application,operationof onediscretefilter requires13.4million FLOPspersecond.

A parallelarchitectureof five filters was initially selected for implementation, since

the computational burden of 67.0 million FLOPs per second was close to the processing

speed of the laboratory computer, see section 4.1 for equipment details. Additionally,

choosing five filters appeared to facilitate a legitimate HM strategy by providing a

reasonable number of transitional modes of machine operation. Obviously, the

computational burden of four sets of adaptive filter loops operating concurrently (268

million FLOPs per second) would exceed the available processing capability. Therefore,

an implementation scheme for detecting individual failure modes was chosen, with the



45

Adaptive
Kalman Filter

Loop #1

Adaptive

lman Filter

Loop #2

I _1 BlendingINPUT: zk o Proceedure

O

o

O

Adaptive

Loop #N

3.19 Block diagram of a parallel adaptive Kalman filter strategy



- 46

presumptionthataparallelprocessingstrategycouldbedevelopedin thefuture.

One otherpotential implementationstrategywasdefined andevaluatedfor the

adaptiveapproach.Ratherthanselectingthebankof Kalmanfilters to depictan individual

failure mode,thepossibilityexiststo utilize thefilter setto quantify an individual system

descriptiveparameter(i.e.. resistance,inductance,viscous damping coefficient, etc.).

Again,aparallelcombinationof filter loopswouldberequired,asshownin Figure3.19,to

completelycharacterizetheEMA system. As previouslydiscussed,this type of parallel

structurewasdeterminedto bebeyondtheavailableprocessingcapability. Therefore,this

conceptwasalsoabandonedfor futuredevelopment.

Different schemesfor constructingthefive filters werereviewed. As shownin

Figure3.20,aninitial formulationfor theadaptivefilter loopenabledthesystemmodeling

of anormalmode,25%of failuremode,50%of failure mode,75% of failure mode,anda

completefailure mode. Conceptually, the HM objective would be realized through

monitoring theselectivetransitionof which filter moreaccuratelydescribedthe system

operation.

Beforeimplementingthis architecture,definition for the blendingprocedurewas

required. Again, thepurposeof the blendingprocedureis to selectivelycombineand

propagatethestateestimate.With the intentionof keepingthecalculationassimple as

possible,a weighted averagingschemewas developed. This schemebegins with a

calculationof projectionerrorfor eachKalmanfilter as,

-[H]xk+l) [R] (3.26),£ (j) = (Z.k+l ^(j) 2

with the (j) superscripts corresponding to the five Kalman filters (j=l,2 ..... 5). Notice that

the calculation of error in (3.26) enables the inclusion of the statistical uncertainty for the

state measurement ( [R] ).
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KalmanFilter_ _
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INPUT:
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Proceedure b OUTPUT:-xk ]

Figure 3.20 Expanded block diagram of the adaptive Kalman filter loop
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Once the error for each filter has been determined, the two filters with the lowest

error are chosen as the most probable state projections. These two errors are summed and

a weighting factor for each filter is calculated as,

F 1 = 1 el (3.27a),
e_ +e 2

F, = I (3.27b),
E 1 + E 2

where the subscripts correspond to the two Kalman filters with the lowest projection error.

If one of the weighting factors is greater than a defined tolerance, then the state projection

from that filter is considered to be accurate and no estimate blending occurs. However, if

both weighting factors are below this tolerance, then an evaluation is made to blend the

state estimate as,

xk÷l = F_(Xk+L)+ F2 (3.28).

Furthermore, these weighting factors are utilized to calculate an estimated descriptive fault

parameter.

For example, in the open circuit failure a fault resistance is included in the five

Kalman filter system models. In this case, the normal mode filter has an extremely low

fault resistance (no fault) and the other filters have progressively increasing values of fault

resistance. An estimated fault resistance for this filter set would be calculated as,

(1) (2)
•t_"./,,,,=F,(R)'a,)+F2(Rto_,) (3.29).
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Thegoalof faultpredictionwouldberealizedthroughobservingthisestimateddescriptive

fault parameterand signalinga warning indication asthe parameterexceedsa defined

healthlimit. SincetheBPMM faultsarequantifiedthroughsystemparameterchanges,an

estimateddescriptivefaultparametermaybecalculatedfor eachfailuremode.



CHAPTER 4

SIMULATION AND EXPERIMENTAL RESULTS

Both simulation and experimental results have been obtained from the

electromechanical actuator system during numerous test procedures. After presenting a

description of the laboratory test facility and equipment, the brushless permanent magnet

machine model of section 3.1 is verified. Next, data is shown to substantiate the failure

mode modeling of the machine. The applicability for using the Kalman filter technique

with the BPMM operating in a normal mode is shown during several tests performed

under various operating conditions. Finally, results are provided to verify the approach of

using an adaptive Kalman filter as a health monitoring system for the machine.

4.1 Electromechanical Actuator Test Facility and Equipment

The Electromechanical Actuator Test Facility at The University of Alabama houses

the EMA system and test equipment. As previously discussed, the EMA system consists

of a roller screw, gear box, brushless permanent magnet machine, and motor drive. The

EMA is mounted in a test frame designed and constructed at The University of Alabama

for mechanically and electrically evaluating the performance of each element of the actuator

50
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system. Therefore,the testframeis equippedwith variouscontrol and instrumentation

componentsnecessaryfor conductingnumerousexperimentson theEMA.

Mechanically, the EMA systemis comprisedof a roller screwand a gearbox.

Translatingrotationalmotioninto linearmovement,the laboratoryEMA systemusesan

SKF Model SR48x20R5 roller screw. The 48 millimeter (mm) diameterscrewwas

equipped with a screw lead of 20 mm, was rated at a dynamic loading of 217.2

kiloNewtons(kN) (385.2kN staticloading),andcontainednopreloadon thenut. Thenut

had amassof 4.2 kilograms(kg) andan inertiaof 6529kg(mm)2 permeter. Thescrew

shaft had a massof 14.2kg and an inertia of 4098kg(mm)2 per meter. Coupling the

motor to the screw, an AccuTrue Model #AT014-004-50 true planetary gear head

manufacturedby Micron witha 4to 1gearratiowasselectedfor thetestsystem.

Elecu'ically, the EMA system is comprisedof a brushlesspermanentmagnet

machineanda motor drive. TheBPMM chosenfor this experimentalapplicationwasa

Kollmorgen Gold-Line model B-802-B-B3 brushlesssynchronousmachine. The

manufacturerhasratedthemachine'sphaseresistanceat0.1£2,thephaseinductanceat9.4

milliHenry, andthe backEMFconstantat 76.0volt/kRPM. ThepowerelecU'onicmotor

drive usedfor operatingthe machineduring the EMA experimentswas designedand

constructedatTheUniversityof Alabama.Baseduponstandardsix-pulsepowerconverter

technologyusing insulatedgatebipolar transistors(IGBT), the designand fabrication

detailsfor themotordrivearepresentedin [43].

The central resourcefor computer control and dataobservation in the EMA

laboratoryis aGateway2000486-DX266megahertzcomputer. Theprimary useof the

computersystemin this researcheffort was for dataacquisition (DAQ) and analysis.

Housedwithin thecomputerisa ComputerBoardsInc., dataacquisitioncardmodel#CIO-

DAS16/330. Programming the DAQ system was accomplished through both the
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manufacturer-supplied software library routines and the Microsoft Quick Basic

programminglanguage.Specificprograms,containedin the Appendix,weredeveloped

for calibrating the systemand for using the DAQ to obtain analog information on all

sixteenchannels. Additionally, a ComputerBoardsInc., sampleand hold card model

#CIO-SSH16wasusedwith the dataacquisitionsystemto facilitate simultaneousdata

acquisitionof all sixteenchannels.

Thereceivedsignalsat thedataacquisitionboardweresampledat afrequencyof

10.0kiloHertz (kHz). Frequencyanalysisperformedon the various measuredsignal

waveformsindicatedthat themostrapidly varying signalwas thephasecurrent signals,

with a maximumfrequencycontentof approximately500.0hertz. Thus,a samplingrate

of 1.0kHz was requiredonall signalsto ensurecompliancewith the Nyquist sampling

criteria [44]. Additionally,anevaluationwasperformedto determinetheminimumtime

stepnecessaryfor motorsimulationaccuracy.SincetheBPMM wasratedat amaximum

mechanicalspeedof 2750RPM,themaximumelectricalspeedwouldbe864.0radiansper

second.Becausethemotorsimulationis regulatedby thesix rotor positionregions,each

havinga rangeof 60 electricaldegrees,thesamplingfrequencymust behigh enoughto

enabletheaccurateelectricaldescriptionof rotormotion. For asamplingfrequencyof 1.0

kHz, which met or exceededall of the calculatedNyquist samplingrates,motion of the

rotorwill traverse49.5electricaldegrees.This obviouslywill yield inaccuratesimulation

performance,thereforethesamplingfrequencyof 10.0kHz waschosenasthebasisfor the

datasamplingfrequency.

The datagatheredfor motor operationanalysisincludedthe following: dc bus

voltage,thethreeline voltages,dcbuscurrent,thethreelinecurrents,thethreepseudoHall

effect signals(seesection 3.1), mechanical rotor speed, and a few motor control signals.

Since the laboratory tests were conducted at full duty cycle operation (no control action) of
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themotor,thecontrolsignalswerenot pertinentfor thisresearchwork. Thecurrentswere

measuredusingMicroswitch model#CSLA1CFlinearoutputHall effect sensorswith a

maximumcurrentratingof 100amperes.Thevoltagesignalswereobtainedfrom voltage

divider circuitry, while therotorspeedandpseudoHall effectsignalswerederivedfrom

theresolverchip data. All of themeasuredwaveformsreachedtheDAQ boardat asignal

rangeof +/- 10.0volts, andwereconvertedwithin theDAQ programsto the appropriate

signalunit values(amperes,revolutionsperminute,etc.).

The armature open and short circuiting failure modes were experimentally

implementedwith the resistor bank shown schematicallyin Figure 4.1. Table 4.1

summarizes the resistance values obtained from the various switch settings on the resistor

bank. The data in Table 4.1 was derived from utilizing Ohm's law by connecting adc

power supply to the resistor bank and measuring the applied voltage and current for each

switch setting. The open circuit failure required the resistor bank to be connected in series

with one of the motor phases and was implemented by progressively increasing the

resistance of the resistor bank. The short circuit failure required the resistor bank to be

connected in parallel with two phases of the motor and was implemented by progressively

decreasing the resistance of the resistor bank.

4.2 Machine Model Verification

The first step towards validation of the brushless permanent magnet machine

model was to verify the electrical and mechanical descriptive parameters of the machine.

As will be discussed below, the individual phase resistance and back electromotive force

constant were both experimentally verified, while the manufacturer's rating for the self and

mutual inductance values were verified through simulation analysis. The mechanical



- 54

Switch #3

[_ Switch #4

/.___..

Switch #5

/__._.

Switch #6

/_____

r fault

8

9

113
Rotary Switch

Figure 4.1 Laboratory resistor bank
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ToggleSwitch Resistance(f2)

# 1 125.0

#2 61.3

#3 61.3

# 4 24.0

# 5 12.0

#6 6.O

RotarySwitch Resistance(f2)

0.1 1154.0

0.2 576.0

0.3 384.0

O.4 288.O

0.5 234.0

0.6 195.0

0.7
0.8

166.0

147.0
0.9 130.0

1.0 115.0

Table4.1 Switchsettingsandresistancevaluesfor thelaboratoryresistorbank



56

parameters,the viscousdampingcoefficient and thesysteminertia, were bothverified

throughexperimentation.

4.2.1 Phase Resistance and Back Electromotive Force Constant

A digital Fluke multimeter was used to measure the phase to neutral resistance for

all three electrical phases of the machine. The values obtained were consistent with the

manufacturer's rating of 0.01 ohms. With the machine coupled to another laboratory

motor, the BPMM was operated at various speeds as a generator with no electrical power

connections. Again, using the digital Fluke multimeter, the phase to neutral voltages

generated by the back EMF were measured. After converting the gathered data from volts

(RMS) to volts (peak), the plot shown in Figure 4.2 was developed. The calculated value

for the slope of the line shown in Figure 4.2 corresponds to the back EMF constant of the

machine. After the appropriate conversions, the experimental value of 0.6573 volts

(peak)/mechanical speed (rad/s) compared favorably with the rating provided by the

manufacturer.

4.2.2 Self and Mutual Inductance

Results from steady-state simulation of the machine model were compared with

experimentally gathered data of the machine to verify the self and mutual inductance

values. The manufacturer's rated value for the phase inductance was converted to an

individual phase self inductance quantity by evaluating the rating as either a wye connected

measurement (divide rating by 2) or as a delta connected measurement (divide rating by 3)

[45]. Assuming the wye connection for the measurement, Figure 4.3 shows the steady
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state simulation and experimental results for the 'A' phase current of the machine operating

at a bus voltage of 200 volts. Assuming the delta connection, Figure 4.4 shows the steady-

state simulation and experimental results for the 'A' phase current of the machine operating

at the same bus voltage. Both simulation models used for generating the data in Figures

4.3 and 4.4 had the mutual inductance terms set to a value equal to 50% of the self

inductance. From the phase shifting resulting from the difference in rotor speed between

the simulation and actual current waveforms shown in Figures 4.3 and 4.4, it is apparent

that the delta connected measurement value more accurately describes the machine. Thus,

the individual phase self inductance parameter was established to be one-third of the rated

value supplied by the manufacturer.

Finally, the mutual inductance term for the individual phases was calculated as a

percentage of the self inductance value and verified through simulation. Three different test

results are shown in Figures 4.5 to 4.7 with the mutual inductance terms set to 25%, 50%

and 75% of the self inductance rating. M1 three figures show the simulated and measured

phase 'A' currents of the BPMM operating at a bus voltage of 200 volts. Again, notice that

the apparent phase shift for the waveforms shown in the figures is the result of a

discrepancy in mechanical speed, which ranged from 1673.0 to 1720.0 RPM. From these

results, it is apparent that the 50% of self inductance rating for the mutual term is the best

descriptive fit for this parameter.

4.2.3 Viscous Damping Coefficient and System Inertia

Experimental results were obtained to verify the mechanical descriptive parameter

for viscous damping. After coupling the machine to the roller screw via the gear box and

locking the nut to the screw shaft, the system was operated in steady-state at various speeds
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with no applied load torque. The mechanical equation of motion for the machine, as

shown in (3.6) and (3.7), reduces during steady state operation at no load to,

_u,v = Gi" + Gi_ + ecic = BCO,,,,<h
O) mech

(4.1).

Figure 4.8 shows experimental results for various tests along with an approximation of the

viscous term as a constant value that is proportional to the mechanical speed. From these

results, it is apparent that equation (4.1) may be accurately approximated as,

-¢
"Fdev = B O) mech --/_/ mech "-" C viscous

t. ,,iechJ

(4.2),

for operating mechanical speeds greater than 75 rad/s (=700 RPM).

Finally, the mechanical inertia coefficient for the EMA system was validated

through experimentation. After the machine obtained steady-state operation, the three-

phase power to the motor was disconnected and the system coasted to rest. Figure 4.9

shows the experimentally measured value for the mechanical speed of the motor during

this test procedure along with an offset linear approximation for the decaying waveform.

Once the supplied electric power was disconnected from the machine, the mechanical

equation as derived in (3.6) became,

va,_ = 0 = cv_co_ + J d c°"ecJ'
dt

(4.3).

Thus. the inertia coefficient of 0.0024 kgm 2 was obtained through dividing the constant
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approximation for viscous damping by the slope of the best linear curve fit, which is

shown in the figure.

4.2.4 Model Verification for Steady State Operation

After verifying all of the electrical and mechanical operating parameters for the

machine model, simulation and experimental data was obtained for steady-state operation

at various applied bus voltages. Figures 4.10 to 4.12 show the simulation and actual phase

'A' currents, line 'AB' voltages, and mechanical speeds for an applied bus voltage of 75.0

volts. Figures 4.13 to 4.15 show the simulation and actual phase 'A' currents, line 'AB'

voltages, and mechanical speeds for an applied bus voltage of 150.0 volts. Figures 4.16 to

4.18 show the simulation and actual phase 'A' currents, line 'AB' voltages, and mechanical

speeds for an applied bus voltage of 200.0 volts. Note that the simulation speed is slightly

lower than the actual speed for the 75.0 volt bus data and is slightly higher than the actual

speed for the 200.0 volt bus data. This observation is consistent with the slight inaccuracy

contained in the approximation of the viscous damping term, as shown in Figure 4.8.

From the results of these experiments, the simulation clearly models the operation of the

motor in steady state.

4.2.5 Model Verification for Dynamic Operation

Establishing the accuracy of the model for simulating dynamic machine behavior is

the last remaining step to complete the verification process. Therefore, both simulated and

experimental data were obtained for transient motor operation, an increase of applied bus

voltage. The simulation and actual phase 'A' currents of the motor for this experiment are



68

_=
<

i

i

i

i

o

tt_

I

o tr_

90"0

50"0

VO'O _-,.

gO'O

_0"0

IO'O "_

' 0 ....
' ' I I

(V) maaJnD ,V, o_qd

I

i

E-

0
;>

t_

t_

e-

Z)

t2_

E

ttJ

ca)



69

2

i

i

J

t-
O

E

I

90"0

I

I1%

I

tt_

I l0 I I

(A) quA O_mlOA ou!q

I

E
em

0

t_

G

2

..E

ft.



<

i

i

0

._.

I

:-:.-.

c

. .-._--._.
°-

r
c.-

: .-..,

° .i

-b
.,,_

-.

-2

-_:

(Nd_l) Paads Itr_!u_qaaIAI

90"0

_0"0

t'O'O

I;O'O

_0"0

IO'O

0

t_

E
.m
f-

tO)
t'_

¢)

¢)

70

.e



71

_=

<

i

i

0

e
C¢)

[ i [ i

_0"0

g_;O'O

ZO'O

_lO'O

I0"0

0

,Jr
\,

<

gO0"O

G " ;- -_

(V) lua-unD ,V, asgqd

I

i

E
,m

[-

r_

..Q

0
p.

tt_

e-

¢:1

¢-

E

>.,
"0

Or)

kl.



72

i

i

i

i

e_
o

I

t
IO'O

I I I 0 I I

i

(A) quA o_]_lOA ou!"l

I

olu

[..

..Q
4.J

0

t_

0

o,.q

2

°,.._



73

.<

i
i

i

a

e-,
Q

°_

I

0

tt5

5"

p

7
,to
I" ] I

(IAMH) Paads ltr_!u_qaal_

I_O'O

_0"0

Z:O'O

gIO'O

IO'O

ffO0"O

_D

E
om

i-

0

¢.)
¢.)
¢._

.o
r-.

¢.)
_o

E

2
¢..)

U'3

¢)
t_

o_
t_



74

eo

<

i

i

i

1

i

r_

. _ - - o .........

5
I!\......

[

i

ZO'O

.

_IO'O _ :

/
IifO

o

_00"0

/

!

(V) _u0z.m:) ,V, asmqd

E
oM

[-

I

0

|

..Q

0
>

0

0
0

N

t-

O
oF,,d

E

N

£

,4

°_,_

LI.



75

e

0

0

c_

I

i ...... _;0"0

.... °_-° ._.._._. _.i..._ _"

.mar -_

-i&

.......

g_'O

i i i I ,01 i I ,

(A) q_A a3mlOA au!q

I

E
o_

O

C_

t_

0
b"

o_

N

.E

N

c_

e_

m



76

2

i

i

_=_

Or}

F
0

¢".I

§

_0"0

510"0

IO'O

500"0

0

¢)

E

¢*.j

E

°_



77

shown beginning in Figure 4.19 and continuing on in Figure 4.20. The simulation and

actual applied line 'AB' voltages are shown beginning in Figure 4.21 and continuing on in

Figure 4.22. Finally, Figure 4.23 shows the simulation and actual mechanica/speeds for

the dynamic test. As a result of the alignment of simulated data with experimentally

gathered data, it is evident that the machine simulation accurately portrays the dynamic

operational characteristics of the brushless permanent magnet machine.

4.2.6 Model Verification for Failure Mode Operation

Since the machine failure mode experiments were designed to be non-destructive to

the test equipment, the flux weakening failure mode was not implemented in the

laboratory. However, simulation of this failure mode was performed with the machine

model. Figure 4.24 shows the phase 'A' current, and Figure 4.25 shows the mechanical

speed of the motor during a simulated flux weakening fault. As expected, the speed and

current both increase to maintain motor torque production, which is decreasing with the

loss of flux in the rotor.

The open circuit fault mode was experimentally implemented using the laboratory

resistor bank as previously described (see Figures 3.5 and 4.1). Phase 'A' of the machine

was arbitrarily selected for failure. Simulation results were also obtained to compare with

the experimental data. However, the timed introduction of the fault resistance via the

switch settings of the resistor bank was not sequenced between the simulation and

laboratory experiments. Figures 4.26 and 4.27 show the simulation and actual phase

currents for the machine, and Figure 4.28 shows the simulation and actual mechanical

speed of the motor. Again, the agreement of simulated and actual data authenticates the
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model's ability to describe the open circuit fault mode for the brushless permanent magnet

machine.

Finally, the short circuit fault mode was experimentally implemented using the

laboratory resistor bank as previously described (see Figures 3.6 and 4.1). The fault

location was arbiu'm'ily chosen between the 'A' and 'B' phases of the motor. Simulation

results were also obtained to compare with the experimental data. Again, the timed

introduction of the fault resistance via the switch settings of the resistor bank was not

sequenced between the simulation and laboratory experiments. Figures 4.29 and 4.30

show the simulation and actual phase currents for the machine, and Figure 4.31 shows the

simulation and actual mechanical speed of the motor. Once again, the reasonable

agreement of simulated and actual data authenticates the model's ability to describe this

fault mode.

4.3 Discrete Kalman Filter Verification

Prior to implementing a health monitoring system using an adaptive Kalman filter

with the BPMM, validation of the discrete Kalman filter as a signal processing technique

for the motor was essential. Since the machine model was verified through both steady

state and dynamic operation performance, the discrete Kalman filter was substantiated in a

similar manner. Therefore, both the experimental and simulation data from the steady state

and transient operation experiments were processed through a discrete Kalman filter.

Before being utilized as a measurement signal by the Kalman filter, the machine simulation

data was perturbed by simulated white noise with variance roughly equivalent to the noise

contained on the actual laboratory signals. It should be noted that the discrete Kalman filter
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program was not optimized for computational efficiency and was not operating at real-time

data processing speeds during these tests.

4.3.1 Verification for Steady State Operation

Figures 4.32 and 4.33 show the noisy simulated phase 'A' current and mechanical

speed signals with the Kalman filter estimates of the waveforms in steady state motor

operation for a bus voltage of 75.0 volts. Figures 4.34 and 4.35 show the actual laboratory

phase 'A' current and mechanical speed signals with the Kalman filter estimates of the

waveforms in steady state motor operation for a bus voltage of 75.0 volts. Figures 4.36

and 4.37 show the noisy simulated phase 'A' current and mechanical speed signals with the

Kalman filter estimates of the waveforms in steady state motor operation for a bus voltage

of 150.0 volts. Figures 4.38 and 4.39 show the actual laboratory phase 'A' current and

mechanical speed signals with the Kalman filter estimates of the waveforms in steady state

motor operation for a bus voltage of 150.0 volts. Figures 4.40 and 4.41 show the noisy

simulated phase 'A' current and mechanical speed signals with the Kalman filter estimates

of the waveforms in steady state motor operation for a bus voltage of 200.0 volts. Figures

4.42 and 4.43 show the actual laboratory phase 'A' current and mechanical speed signals

with the Kalman filter estimates of the waveforms in steady state motor operation for a bus

voltage of 200.0 volts.

4.3.2 Verification for Dynamic Operation

Finally, the transient operation of the machine was processed by the discrete

Kalman filter. Figures 4.44 to 4.46 show the noisy simulated phase 'A' current and



93

E

J

i

i

i

i

O

0
Z

I I I I

0 u3

90"0

_;0"0

£0"0

ZO'O

o

IO'O f

f-
(V) luoaanD ,V, os_qd

I

i

oq

0

tt_
t_

e-,

<0

E
°_

G.;

° ,,...q
0

>..,

¢_

oo

Cq

¢:m



.=

i

i

i

0

°_

X

I

g
oo

!-

P

L

90"0

gO'O

1,0"0

£0"0

_;0"0

10"0

_D

em

J
0
:>

E

N

E
°_

N

G

N

94

r_

,4

e_



95

w

E

i

i

i

i

0

2
<

I [ I

_0"0

_'0 __

E0"0

Z;0"0

I0"0

0 I

(V) :lu_aanD ,V, o_qd

i

I

t

E
[-

O

E
..,__

"¢t"

°_



i

t

i

u

i

.<

I

°

,c

i

q

I i

(IAId_l) p_ods IV_!u_qa_lAI

90"0

gO'O

VO'O

gO'O

;_0"0

IO'O

0

om

[..

e'_

o

¢,_

e_

e_

96

e,,,,

o,o
°_,,_



97

E

i

i

0

Z

t_O'O

I _ I I G

!;EO'O

_IO'O

IO'O

',?,

(V) _uaJ.mD ,V, as_qd

[-,

[

i

0

_e5

0

0

e-
ea_

E

0

"0

©

¢:1

5r)

(+5

.o

°,_
k_



98

¢_

m

i

m

0

°_
0
Z

I I I

(IAId_l) paads Iva.mvq_olN

g
tf_

¢0"0

gZO'O

ZO'O

ffIO'O

lO'O

_00"0

E

>

¢#)

r'.

E

E
..,=

e-,

E

0

tt_

>.,

tm



99

"a

_J

i

i

i

i

i

,¢

Lr_

_0"0

g_O'O

b

ffIO'O

IO'O

(V) lua.Lm_) ,V, _s_qd

B_

Im

[-,

i

,.Q

O
).

E
0_

{/3

¢¢3



100

i

i

i

J

2

<

I

EO'O

_EO'O

_0"0

_IO'O

IO'O

500"0

0

om

p.,

0
>

t_

¢..)
° ¢..._

¢,_

E

£
¢_

E

¢xO
°¢.-i
Lr.,



lOl

0

I

i

O

Q
Z

I-------I I i 0

_0"0

_IO'O /

lifO

_00"0

.......

i " I

(g) _UOaan_ ,V, os_qd

I

i

oI

[..,

..0

o

¢',4

N

N

E

o

r_

0_



102

¢_

i

m

g

i

i

e-
¢)

.n

°_
¢)

Z

I

¢'4

(IAId_l) paads l_ra!UmlaalAI

_0"0

_I0"0

I0"0

_00"0

0

E
em
[-

t_

0

¢5

¢,1
¢:t

oo

e-

fi.)

E

E
ct)

¢:1

.e
¢d)

0
e',

¢"d

>._

oq

° ,...t
Lk



103

o

o0

6

i

i

b

i

_ _

u .....

I I I t

u_ 0

_0"0

gIO'O "'_

IO'O

ffO0"O

..... i1

'9,

(V) lua.lan::) ,V, 0_qd

I I

t

r_

;D

E
e_
[-

o

0

cq

t_

¢D

_t

E

2

,,.._



104

*

i

i

I

1
I l

(IATdH) Paads lW!uvq_alAT

§

_0"0

_I0"0

10"0

_00"0

E
.m

G

t_

¢_

°_
¢-

¢J

E

¢'4

E

¢J

¢}

0'5

¢5





i



107

E

tm

o
.,,,_

...

°_

Z

i

J

i

t

g

I I ;

(IAId_I) poods l_.muq_o_

g£'O

£'0

_'0

Z'O

gI'O

I'O

_0"0

om

0
°_

0
t..,

0

E

e_

t..,

r/l

Z)
4L)

E

E

E
._,,_

0

Z

,¢.
.m-

°_



108

£

i

a

i

i

2

!

I I I I I L

5I'0

i = _ i I
I U '

i

(V) _uoaan:) ,V, _qd

om
[..

I

i

°_

.=

0

£
G
E

°_

E

<

r_

°_



109

i

i

i

i

t

<

[ I

L

!

-.g

I

!

Vo

I I I I uv ,

(V) lua.i.m_) ,V, asEqd

It3

i

.E
[.,

_D

r--

c-
0

o

o
t_
0

0

E

e-,

E

e-
e'd

e_

<

t_



110

LI.I

i

i

i

i

¢o

.<

]

tt%

_;£'0

£'0

_'0

_'0

_I'O

I'O

_:0"0

0

E
om

c-
o

t.

o

G
E

¢.)

t_

°.,.,

E

2

.<

ca)

LI.



Ill

mechanical speed signals with the Kalman filter estimates of the waveforms. Figures 4.47

to 4.49 show the actual laboratory phase 'A' cun'ent and mechanical speed signals with the

Kalman filter estimates of the waveforms. From the obvious agreement between the filter

estimates and the signal waveforms for steady state and dynamic motor operation, using

both simulated and actual data, the discrete Kalman filter is an accurate signal processing

approach for the brushless permanent magnet machine.

4.4 Adaptive Kaiman Filter Verification

Equipped with the knowledge that the discrete Kaiman filter is an appropriate signal

processing technique for the brushless permanent magnet machine, it is reasonable to hope

that the adaptive filter will be adequate for the task of health monitoring the BPMM. This

section describes the verification of the filter's performance with the nonlinear behavior

associated with the flux weakening, open circuiting, and short circuiting failure modes.

When possible, both simulated and actual laboratory fault data was evaluated with the

adaptive filter sta'ategy developed in ,section 3.4.

4.4.1 Flux Weakening Failure Mode

As previously stated, the flux weakening failure was conducted solely through

simulation. Initial adaptive filtering results tbr processing this failure mode were

surprisingly poor. Troubleshooting the filter's performance by allowing each filter estimate

to become it's next state rather than blending the estimates of the two best filters led to the

data shown in Figure 4.50. The plot depicts the simulated mechanical speed and two filter

estimates tbr speed. The back EMF constant, which is the parameter used to describe this
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fault, is utilized by the model for calculating the generated back EMFs contained within the

deterministic control input vector (g_). Therefore, rather than having the fault description

expressed within the state transition matrix, the fault is cun'ently being described within the

conta'ol input vector. This is problematic since the control input vector also contains the

rotor position signals which are stron,,ly_, correlated to mechanical speed. Notice from

Figure 4.50 that the fault redttces the oscillations of the estimate fl'om the fifth filter, while

the estimate from the first filter starts oscillating. For this test. the first filter depicted

normal operation while the fifth filter exactly described the simulated fault, and the

measurement data used was noiseless simulation signals.

4.4.2 Open Circuit Failure Mode

The adaptive Kalman filter was implemented for the open circuit failure mode and

performed well with both simulation and actual data. Two strategies for filter selection

were used. The first approach was designed to utilize the third tilter of the five Kalman

filters to describe the fault, thus the best estimate should emerge from the middle filter.

The second approach was designed to utilize the fifth Kalman filter to describe the fault.

Both strategies contained an averaging technique for expressing an estimate of the fault

resistance. Figures 4.51 and 4.52 show the fault resistance estimate for both strategies of

adaptive Kalman filtering using noisy simulation data as signal measurements. Figures

4.53 and 4.54 show the fault resistance estimate for both strategies of adaptive Kalman

filtering using the actual laboratory data as signal measurements. The results from these

tests indicate that the adaptive approach senses the presence of the open circuit failure as

depicted by the increasing estimate for fault resistance. Therefore, the function of machine
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health monitoring for this t-ailure mode can be accomplished via the adaptive Kalman filter

strategy.

4.4.3 Short Circuit Failure Mode

Finally, the short circuit failure mode was evaluated with the adaptive Kalman filter.

Again, an averaging scheme was used for estimating the fauIt resistance for the failure.

Figure 4.55 shows estimated fault resistance from the adaptive Kalman filter with noisy

simulated data as signal measurements. While the figure shows that the filter indeed

senses the short circuit, the performance of the filter was determined to be maa-ginal. When

using actual laboratory data as signal measurements, the filter performance was inadequate.

Troubleshooting the performance of the filter" resulted in the discovery that the simplified

motor drive model was not able to accurately depict all of the physical phenomena of the

operation of the real motor drive. Specifically, when the motor speed decreases, the rotor

produces a current due to the back EMF which circulates through the motor drive. The

simplified model does not facilitate this current flow. Since the focus of this research is to

accurately model the BPMM, resolution of the motor drive model deficiencies will become

a topic for future study and development. However, once this modeling issue is resolved,

the adaptive Kalman filter scheme ought to function adequately as a health monitor for this

failure mode.
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CHAPTER 5

SUMMARY

The result of this research effort has yietded significant insight into the feasibility of

using the adaptive Kalman filter as a health monitonng system for the brushless permanent

magnet machine. This chapter begins with an application recommendation for utilizing this

approach of health monitoring with the electromechanical actuator system. Included within

the recommendation are specific concepts and tasks necessary for obtaining a practical

implementation of this technology. Additionally, topics for future study and development

have been defined and are presented in section 5.2.

5.1 Application Recommendation

The objective for a health monitoring system for the electromechanical actuator

may be summarized as a non-intrusive, real-time fault prediction system requiring no

additional sensors. To that end, the adaptive Kalman filter has been demonstrated to be a

feasible approach towards a health monitoring system. While this research has not

specifically addressed the issue of real-time processing, certainly it is reasonable to assert

that the continued growth in computational processing capability would ensure the

realization of this objective.

120
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To obtain a practicalimplementationof this technology,severaltasksneedto be

accomplished. First, thecomputercode which implementsthe adaptiveKalmanfilter

needsto be optimized for computationalperformance. A twofold approachtowards

optimizationshouldincludeenhancingthecomputerlanguagestructureof thecodeaswell

asreducingthecomputationalburdenof theadaptivefilter. Forexample,theobservability

matrix ([Hk ]) containsnumerouszeroentrieswhicharecun'entlybeingprocessedfor each

matrix multiplication involving [Hk]. Since [n_] does not change, the zero entry

multiplicationdoesnotneedto becomputedduringeachtimestep. Secondly,theresulting

optimizedcomputercodeshouldbe transformedontoadigital signalprocessingplatform.

Studiesshouldbe conductedto determinethereal-timeprocessingcapabilitiesfor this

architecture. The possibilityexists thatreal-timeprocessingis currently within reachor

could be obtainedwith someadditionalcodemodification. Finally, the currentsystem

mode/usedby the filter needsto be expanded to facilitate sensing the flux weakening

failure as well as enhancing the capability to detect the short circuit failure. Once these

tasks are accomplished, a practical implementation of the adaptive Kalman filter should be

realized.

5.2 Future Development Topics

Several topics for future study and development have surfaced during the course of

this research. Perhaps the most fertile opportunity for development resides in further

understanding the performance of the adaptive filter as related to specific 'tuning'

parameters. As previously discussed, the Kalman technique relies upon an understanding

of the statistical nature of the process noise ([Q_ ]), measurement noise ([Rg]), and prior

state knowledge ([Pk ]). Specifically, these covariance matrices reflect a quantification of
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the confidence level for having an accurateprocessmodel, for having an accurate

measurement,andfor previouslyhavinganaccuratestatevector. Certainquestionshave

yet to be thoroughlyanswered,suchas,how do thecovariancematricesinteractwith one

anotherwith respectto filter performance?Is thereanoptimal settingfor the valuesof

covariancewhich would enhancefilter peFformance?Is the actual noiseencountered

statisticallywhite,andif not,howdoesthis impactthefilter'sperformance?

Additional 'tuning'parametersusedin theadaptiveKalmanfilter approachinclude

thecalculationof estimationerrorfor eachof theparallelfiltersandtheerrortoleranceused

for calculatingtheblendingmixture. Currently,eachfilter's estimationerror hasbeen

shownto becalculatedas(3.26)asthestatisticalsquarederrorbetweenthemeasurement

andstateestimate. However,is this the bestmethodfor measuringtheestimationerror?

Perhapsanothermethodexistsfor quantifyingthefilter error that will yield betterhealth

monitoringperformance.Forexample,onestrategyfor calculatingtheen'ormaybe,

E(l) (Zt+l ^(j) 2 -i- [R] (5.1),

which would tend to minimize the estimation error due to states that have more uncertainty

of measurement. Thus, the estimation error would be weighted toward the error between

estimated and more accurately measured state variables. Furthermore, the current strategy

chooses one filter's estimation to be accurate if the error of that filter comprises more than a

defined percentage of total error for the two most accurate estimates. If the percentage of

total error does not exceed the tolerance, then the two most accurate estimates are blended

together. However, what is the optimal value for this tolerance setting? What is the

interaction of this setting with other filter parameters? Is the current strategy for blending
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thetwo estimatesoptimal? Thesearequestionsdealingwith the 'tuning'of this adaptive

sta'ategyfor optimalperformance,andareworthyof futureresearch.

As previously mentionedin section5.1, the systemmodel usedby the Kalman

filter needsto beexpandedandrefined. Clearly, theneedexistsfor this systemmodelto

moreaccuratelyrepresenttheoperationof themotordriveandto facilitatesensingall fault

modes.As long asthemodel is beingrevised,it would bevaluableto clearly definethe

boundaryconditionsfor the healthmonitoring systemmodel. For example,should the

roller screw,nut,gearbox,andtheir associatedsensorsbe includedin theHM system?If

themotordrive is includedin themodel,areadditionalsensorsrequired? Are additional

failuremodespresentwith anexpandedEMA systemmodel?

Thecurrentstrategyfor parallel filter implementationutilizesfive Kalmanfilters.

Sincethetwo mostaccurateestimatesareutilized, is it optimalto calculatedatafor all five

filters duringeachtimestep? Perhapsthestructurecouldbe revisedandenhanced.For

example,ratherthanusingfive filters, havethreefilters thatdynamicallyadjustto include

themostaccuratestatemodelandtwo additionalmodelsthat allow thesystemto move

towardsdiffering statedescriptions.Furthermore,ratherthanattemptingto monitoreach

failure mode individually, would it be feasible to assessall systemmodesthrough a

strategyof dynamicparametermodeling?How wouldtheseapproachesdiffer with regard

to normalparametervariance(suchastheexpectedchangein machinephaseresistancedue

to thermalchangesof thestator)?

Anothertopic thatpossesinterestingquestionsyetto beconsideredis the impactof

thecontrol actionof themachinewith regardon theHM system.Pulse-widthmodulation

(PWM) is one common techniquefor operatingand controlling brushlesspermanent

magnetmachines. A machineoperatedwith a PWM control strategyhas the phase

currentsswitchedat highfrequenciesduringnormaloperation.How would thisswitching
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action affect the requiredsamplingfrequencyof the HM system? How doesa conta'ol

action,like PWM, affectthefault detectionstrategy?Shouldthecontrol systemandHM

systembe interconnectedin somemanner?

Finally, the opportunityexists to developfurther understandingof information

usagewith regardto thegoalof healthmonitoring. Forexample,thethreephasecurrents,

pseudoHall effectsignals,andlinevoltagesof themachineareall stronglycorrelatedtothe

rotor speedof themachine. Is it possibleto developaredundantcalculationof machine

statevariablesdueto thiscorrelation?How maythestatevariableinformationbeutilized

to compensatefor a lossof sensorfailure? Currently,themachinespeedsignal is quite

noisy, is it possible to reduce the measurementnoise? If the HM system model is

expanded to include the machine drive and mechanical system, will there be additional

correlated signals that may be exploited for state variable calculation?

This research effort has been an initial probe into the concept of brushless

permanent magnet machine health monitoring via the adaptive Kalman filter. While the

study has demonstrated the feasibility of this concept, it seems as though numerous issues

and items have been discovered which deserve future exploration. Hopefully, research

work will continue to discover insight into these areas and a practical implementation of

this technology will be fabricated.
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APPENDIX

Calibration program:

*********************************************************************

'*** This statement enables Qbasic to call functions configured

'*** by the DAQ manufacturer. The CB.BI file must be in the

'*** C:kMDRIVE directory. Also note that the CB.CFG file must

'*** be in the C:\MDRIVE directory and it must be set for 16

'*** channel analog input.

'$INCLUDE: 'CB.BI'

'*** Declare and define variables

CONST BoardNum = 0

CONST NUMPOINTS = 5000

FirstPoint = 0

'AD board ID

'Total number of samples per channel
'Index used in streamer file access

SUM0 = 0!

SUM1 = 0!
SUM2 = 0!

SUM3 = 0!

SUM4 = 0!

SUM5 = 0!

SUM6 = 0!

SUM7 = 0!

SUM8 = 0!

SUM9 = 0!

SUM10 = 0!

SUMll = 0!

SUM12 = 0!

SUM13 = 0!

SUM14 = 0!

SUM15 = 0!

'Counter used for averaging Chan0

'Counter used for averagmg Chanl
'Counter used

'Counter used

'Counter used

'Counter used

'Counter used

'Counter used

'Counter used

for averaging Chan2
for averaging Chan3

for averaging Chan4

for averaging Chan5

for averaging Chan6

for averaging Chan7

for averaging Chan8

'Counter used for averaging

'Counter used for averaging

'Counter used for averaging

'Counter used for averaging

'Counter used for averaging

'Counter used for averaging
'Counter used for avera _mg

Chan9

Chart 10

Chan 11

Chan 12

Chanl3

Chart 14

Chanl5
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LowChan% = 0 'Lowest channel sampled
HighChan% = 15 'Highest channel sampled

Channels& = HighChan% - LowChan% + 1 'Total number of channels sample

Count& = NUMPOINTS * (Channels&) 'Total number of data samples

Rate& = 10000 'Sampling rate for each channel (samples/second)

Options% = NODTCONNECT 'Variable for the cbFileAInScan statement
Gain% = BIP 10VOLTS 'Vaxiable for the cbFilelnScan statement

CLS

'*** The SHELL command launches DOS operation of the RAMDAT batch

'*** file, which creates the data streamer tile.

SHELL "C :kMDRIVE\B ATCHkRAMDAT"

'_

,_:_

RAM.DAT is the filename for the data streamer file located on

the D drive, which is a RAM disk. The data file has been

configured to hold 500,000 data points.

RAMDRIVE$ = "D:\RAM.DAT"

SpreadsheetS = "C:\MDRIVE\CALIB.DAT" 'Filespec for calibration results

'$STATIC

DIM ADData%(Channels&) 'dimension an array to hold the input values

DIM ChanTags%(Channels&) 'dimension an array to hold the channel tags

'*** Launch the error handling routine, this is a function call

UDStat% = cbErrHandling%(PRINTALL, STOPALL)

CLS

X% = POS(0)
Y% = CSRLIN

PRINT "Collecting data.", TIMES
PRINT

'*** cbFileAInScan is a function call to scan the DAQ an stream

'*** the data into a specified file.

UDStat% = cbFileAlnScan%(BoardNum, LowChan%, HighChan%, Count&, Rate&,

Gain%, RAMDRIVE$, Options%)

PRINT "Data collection complete.", TIMES
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PRINT
PRINT "Beginningdataconversion."
PRINT

OPENSpreadsheetSFOROUTPUTAS #1

UDStat%= cbFileRead%(RAMDRIVE$,FirstPoint,Channels&,ADData%(0))
UDStat%= cbAConvertData%(Channels&,ADData%(0),ChanTags%(0))

t******** ***** ,, **** **, _*****, **********,************_,****** ****_***

'*** The CHAN# variables convert the binary channel information
'*** contained in the ADData% array into actual values. The channel

'*** voltage range is assumed to be +/-10 volts; therefore,
'*** 20/4096 * ADData% - 10 centers and converts the binary signal to
'*** the +/-10 volt scale.

CHAN0 = (20! / 4096!) *

CHAN1 = (20!/4096!) *

CHAN2 = (20! / 4096!) *

CHAN3 = (20! / 4096!) *

CHAN4 = (20! / 4096!) *

CHAN5 = (20! / 4096!) *

CHAN6 = (20! / 4096!) *

CHAN7 = (20! / 4096!) *

CHAN8 = (20! / 4096!) *

CHAN9 = (20! / 4096!) *

CHAN10 = (20! / 4096!)
CHAN11 = (20! / 4096!)

CHAN12 = (20! / 4096!)

CHAN13 = (20! / 4096!)
CHAN14 = (20! / 4096!)

CHAN15 = (20! / 4096!)

ADData%(0)- 10!

ADData%(1)- 10!

ADData%(2)- 10!

ADData%(3)- 10!

ADData%(4)- 10!
ADData%(5)- 10!

ADData%(6)- 10!

ADData%(7)- 10!

ADData%(8)- 10!

ADData%(9)- 10!
* ADData%(10) - 10!

* ADData%(11) - 10!

* ADData%(12) - 10!

* ADData%(13) - I0!

* ADData%(14) - 10!

* ADData%(15) - 10!

SUM0 = SUM0 + CHAN0

SUM1 = SUM1 + CHAN1

SUM2 = SUM2 + CHAN2

SUM3 = SUM3 + CHAN3

SUM4 = SUM4 + CHAN4

SUM5 = SUM5 + CHAN5

SUM6 = SUM6 + CHAN6

SUM7 = SUM7 + CHAN7
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SUM8 = SUM8 +
SUM9 = SUM9 +
SUM10 = SUM10
SUMll = SUMll
SUM12 = SUM12
SUM13 = SUM13
SUM14 = SUM14
SUM15 = SUM15

CHAN8
CHAN9
+ CHAN10
+ CHAN11
+ CHAN12
+ CHAN13
+ CHAN14
+ CHAN15

*********************************************************************
'*** IncrementFirstpointsothatthenextsetof 16data
'*** samplescanbeaccessedin thecbFileReadstatement.

FirstPoint= FixstPoint+ (Channels&)

NEXT

PRINT
PRINT "Dataconversioncompleted.",TIMES

SUM0 = SUM0 / NUMPOINTS

SUM 1 = SUM 1 / NUMPOINTS

SUM2 = SUM2 / NUMPOINTS

SUM3 = SUM3 / NUMPOINTS

SUM4 = SUM4 / NUMPOINTS

SUM5 = SUM5 / NUMPOINTS

SUM6 = SUM6 / NUMPOINTS

SUM7 = SUM7 / NUMPOINTS

SUM8 = SUM8 / NUMPOINTS
SUM9 = SUM9 / NUMPOINTS

SUM10 = SUM10 / NUMPOINTS

SUM 11 = SUM 11 / NUMPOINTS
SUM12 = SUM12 / NUMPOINTS

SUM13 = SUM13 / NUMPOINTS

SUM14 = SUM14 / NUMPOINTS

SUM15 = SUM15 / NUMPOINTS

*********************************************************************

'*** Output the results to #1 and the screen

PRINT #1, SUM0, SUM1, SUM2, SUM3, SUM4, SUM5, SUM6, SUM7, SUM8,

SUM9, SUM10, SUMll, SUM12, SUM13, SUM14, SUM15
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PRINT
PRINT "ChannelCalibrations:"
PRINT
PRINT "Chan 0 ...VdcI", SUM0

PRINT "Chan 1 ... Vdc2", SUM 1

PRINT "Chan 2 ... Idc ", SUM2

PRINT "Chan 3 ... Va ", SUM3
PRINT "Chan 4 ... Ia ", SUM4

PRINT "Chan 5 ... Vb ", SUM5

PRINT "Chan 6 ... Ib ", SUM6

PRINT "Chan 7 ... Vc ", SUM7
PRINT "Chan 8 ... Ic ", SUM8

PRINT "Chan 9 ... Hall A", SUM9

PRINT "Chan 10 ... Hall B", SUM10

PRINT "Chan 11 ... Hall C", SUM11

PRINT "Chan 12 ... Speed Act", SUM12

PRINT "Chan 13 ... Speed Des", SUM13
PRINT "Chan 14 ... Cartier", SUM14

PRINT "Chan 15 ... PWM", SUM15

CLOSE #1

END

Data acquisition program:

*********************************************************************

'*** This statement enables Qbasic to call functions configured

'*** by the DAQ manufacturer. The CB.BI file must be in the

'*** C:hMDRIVE directory. A/so note that the CB.CFG file must

'*** be in the C:LMDRIVE directory and it must be set for 16

'*** channel analog input.

'$INCLUDE: 'CB.BI'

CONST BoardNum = 0

CONST NumPoints = 1000

CONST Rate& = 5000

'AD board ID

"rotal number of samples per channel

'Sampling rate for each channel (samples/second)

FirstPoint = 0 'Index used in streamer file access
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LowChan%= 0
HighChan%= 15
Channels&= HighChan%- LowChan%+ 1
Count& = NumPoints* (Channels&)
Options%= NODTCONNECT
Gain%= BIP10VOLTS

'Lowestchannelsampled
'Highestchannelsampled

'Totalnumberof channelssampled
'Totalnumberof datasamples

'Variablefor thecbFileAInScanstatement
'Variablefor thecbFilelnScanstatement

'$STATIC
DIM ADData%(Channels&) 'dimensionanarrayto holdtheinput values
DIM ChanTags%(Channels&)'dimensionanarrayto holdthechanneltags
DIM CalData%(4500)

OPEN "C:\MDRIVE\CALIB.DAT" FORINPUT AS #2

INPUT #2, BIAS0,BIAS1,BIAS2, BIAS3, BIAS4, BIAS5,BIAS6, BIAS7, BIAS8,
BIAS9, BIAS10, BIAS11, BIAS12, BIAS13, BIAS14,BIAS15

RANGE0= 40! / BIAS2 'Variable used to convert Idc

RANGE1 = 40! / BIAS4 'Variable used to convert Ia

RANGE2 = 40! / BIAS6 'Variable used to convert Ib

RANGE3 = 40! / BIAS8 'Variable used to convert Ic

CLS

'*** The SHELL command launches DOS operation of the RAMDAT batch
'*** file, which creates the data streamer fde.

SHELL "C:kMDRIVE\B ATCH_AMDAT"

RAM.DAT is the f'dename for the data streamer file located on

the D drive, which is a RAM disk. The data file has been

configured to hold 500,000 data points.

RAMDRIVE$ = "D:\RAM.DAT"

PRINT

PRINT

INPUT "Filename (no extension) to store data"; FileS

CLS

'*** C nverted data spread sheet file
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SpreadsheetS= "C:\MDRIVE\TOMV'+ FileS+ ".wkl"

'*** Launchtheerrorhandlingroutine

UDStat%= cbErrHandling%(PRINTALL,STOPALL)

X% = POS(0)
Y% = CSRLIN
PRINT "Collectingdata.",TIMES
PRINT

UDStat%= cbFileAInScan%(BoardNum,LowChan%,HighChan%,Count&,Rate&,
Gain%,RAMDRIVE$, Options%)

PRINT "Datacollectioncomplete.",TIMES
PRINT
PRINT "Beginningdataconversion."
PRINT

OPENSpreadsheetSFOROUTPUTAS #1

*********************************************************************
'*** Tagvariablesprovidecolumnheaderinformationfor thespreadsheet

Tag0$= "V Dc1"
Tagl$ = "V Dc2"
Tag2$= "I Bus"
Tag3$= "Va"
Tag4$= "Ia"
Tag5$= "Vb"
Tag6$= "Ib"
Tag7$= "Vc"
Tag8$= "Ic"
Tag9$= "Hall A"
Tagl0$ = "Hall B"
Tag115= "Hall C"
Tagl2$ = "SpeedAct"
Tag135= "SpeedDes"
Tagl4$ = "Carrier"
Tagl5$ = "PWM"
Tagl6$ = "SampRate"
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PRINT #1, USING "&,&,&,&,&.&,&,&,&,&,&,&,&,&,&,&,&,&,&.######"; Tag0$;
Tagl$; Tag2$;Tag3$;Tag4$;Tag5$;Tag6$;Tag7$;Tag8$;Tag9$;Tag105;Tag115;
Tagl2$; Tagl3$; Tagl4$; Tagl5$; DATES;TIMES;Tagl6$; Rate&

FORj = 1TO NumPoints

UDStat%= cbFileRead%(RAMDRIVE$,FirstPoint,Channels&,ADData%(0))
UDStat%= cbAConvertData%(Channels&,ADData%(0),ChanTags%(0))

'*** TheCHAN# variablesconvertthebinarychannelinformation
'*** containedin theADData%arrayintoactualvalues.Thechannel
'*** voltagerangeisassumedto be+/-10volts;therefore,
'*** 20/4096* ADData%- I0 - BIAS# centersandconvertsthe
'*** binarysignalto the+/-10volt scale.

CHAN0
CHAN1
CHAN2
CHAN3
CHAN4
CHAN5
CHAN6
CHAN7
CHAN8

= 25! * (((.0048828125#)* ADData%(0)- 10!)- BIAS0)
= 25! * (((.0048828125#)* ADData%(1)- 10!)- BIAS1)
= RANGE0* (((.0048828125#)* ADData%(2)- 10!)- BIAS2)
= 25! * (((.0048828125#)* ADData%(3)- 10!)- BIAS3)
= RANGE1 * (((.0048828125#)* ADData%(4)- I0!) - BIAS4)
= 25! * (((.0048828125#)* ADData%(5)- 10!)- BIAS5)
= RANGE2* (((.0048828125#)* ADData%(6)- 10[) - BIAS6)
= 25! * (((.0048828125#)* ADData%(7)- 10!)- BIAS7)
= RANGE3 * (((.0048828125#)* ADData%(8)- 10!) - BIAS8)

CHAN9 = .0048828125#* ADData%(9)- 10!
CHAN10= .0048828125#* ADData%(10)- 10!
CHAN11 = .0048828125#* ADData%(11)- 10!
CHAN12 = 687.5* (.0048828125#* ADData%(12)- 10! - BIAS12)
CHAN13 = 275 * (.0048828125#* ADData%(13)- 10!)
CHAN14 = .0048828125#* ADData%(14)- 10!
CHAN15 = .0048828125#* ADData%(15)- 10!

'Vdcl
'Vdc2
'Idc
'Va

'Ia

'Vb

'Ib

'Vc

'Ic

'Hall A

'Hall B

'HaUC

'Speed Act
'Speed Des
'Carrier

'PWM

PRINT# 1,U SING"####.####,####.####,####.####,####.####,##_.####,_._,_

##.####,####.####,####.####,####.####,####.####,####.####,_._,_._,_
##.####,####.####"; CHAN0; CHAN1; CHAN2; CHAN3; CHAN4; CHAN5; CHAN6;

CHAN7; CHAN8; CHAN9;CHAN10; CHANll; CHAN12; CHANI3; CHANI4;

CHAN 15

'*** Increment Fh'stpoint so that the next set of 16 data

'*** samples can be accessed in the cbFileRead statement.

FirstPoint = FirstPoint + (Channels&)
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NEXT

PRINT
PRINT "Dataconversioncompleted.",TIMES

CLOSE#1

END




